youare독존 [1055336] · MS 2021 (수정됨) · 쪽지

2022-01-10 15:21:28
조회수 8,617

칼럼) 눈풀물1

게시글 주소: https://orbi.kr/00042891171

 과외 때 쓰는 거지만, 좋아요와 팔로우에 미친 독존은 오늘도 글을 씁니다.


눈풀물--> 과외생 개념 수업 끝나면, 바로 펜을 뺏습니다. 이게 무슨 행태란 말인가..?


기만질일까요? 괴롭히려고 그러는걸까요? 


그럴 리가 없잖습니까...





눈으로 푼다는 의미를 우선 생각해보죠. 


--------------------------------------------------------------------------------------


눈으로 문제를 본다->발문을 읽는다->작전을 짠다->그림도 본다


->시뮬레이션으로 물체의 움직임을 상상한다->혹시 정수 비율이 있나 살핀다


->같은 게 같은 줄 알고, 치환한다->계산한다.


---------------------------------------------------------------------------------------


중 계산한다 제외 모든 과정을 함의하는 겁니다.


 이걸 왜 펜없이 눈으로 풀어야 합니까?


눈으로 풀려면, 엄청나게 집중해야 합니다. 


하나의 조건이라도 더 안 까먹기 위해서 집중한 상태여야 합니다.


근데 그림보고 시뮬레이션 하고 정수 비율있나 살피고, 이런게 펜이 필요할까요?




사실 눈으로 해야하는 파트에 펜을 대는 순간 나오는게 이차방정식입니다;;;

 



s=Vo+1/2at^2 이런 걸 왜 외워서 합니까,,,


저 식을 좀만 변형해보면, t(Vo+(Vo+at))/2 -> 시간 곱하기 평균속도


라는게 보이잖아요. 이제는 워낙 상용화된 예시긴 합니다만,


평균속도를 구하기 위해서는 어차피 초기속도와 나중속도만 구하면 될것이고,


그러니 눈으로 째려보며 모든 조건을 V로 바꾸는 작업은 필연적이죠. 


평균속도 곱하기 시간이라고 이해하는 것과 


무지성 암기를 통한 t에 대한 이차방정식. 


이 둘은 식의 복잡성이 아예 달라요. 


같은 식이라 하더라도요.


그리고 같은게 같은 것인줄 알아보는 것. 이게 굉장히 중요합니다.


예를 들어 A와 B가 실로 엮여있으면, 


실p가 A에 가하는 장력=실p가 B에 가하는 장력 임을 이용하면 


보다 계산에 유리한 것으로 A와 B 중 선택을 많이 하시잖아요. 그거 말하는거에요.





이렇게 눈으로 풀어보며, 자신이 암산 가능한 계산의 범위로 


식을 간단하게 끌어오는 것. 


그것이 눈풀물의 본질입니다. 




그리고 가장 물리 역학 실력을 끌어올릴 수 있는 방법이고요.


어차피 비역학은 눈으로 다 풀리잖아요...


  


말로는 다했으니 기출 문제 들고 올까요?


아무 문제나 다 된다는 뜻으로 무지성 2022 수능 3, 4페이지 역학 문제를 살펴볼게요.


( 수능 끝나고 처음 펴서 살짝 긴장되네요)








그리고 아래 내용들은 절대 펜 없이 노트북에서 바로 타이핑 한 것임을 알려드립니다.


어떻게든 저는 여러분께 믿음을 주어야 하는 입장이니까요,, 


국어 칼럼 보신 분들은 아시겠지만, 제가 칼럼으로 쓰는 내용들은 


그저 이런게 있단 걸 아는 것만으로 등급이 도약할 수 있는 내용이라는 것을


저는 계속 주장할거고, 설득할거고, 실제로 여러분을 그렇게 만들려고 할 것입니다.







이제 나올 내용은 문제 해설이니 지루하실 수도 있습니다. 


하지만, 앞의 내용처럼 원론적이고, 추상적인 얘기를 보는 것보단


문제와 함께 본인이 직접 느끼시는게 훨씬 중요합니다.


따라서, 뒷부분이 더 중요하다는 걸 알고 들어가시기 바랍니다..!



-------------------------------------------------------------------------------------------------------------------------



째려봅시다.


발문 분석&작전 짜기 with 그림_



 A와 B는 왼쪽으로, C는 오른쪽으로 힘을 가하네요.


다만, A는 공중에 떠있어서 3mg로 계산이 편리하나, 


B와 C는 빗면이기에 따로 빗면에서 물체들에 작용하는 힘(이하 빗면힘)을 잡아야겠죠.


B의 빗면힘= f1, C의 빗면힘=f2.




가속도가 a로 주어졌으니, F=ma 공식을 통해 알짜힘을 표현할 수 있겠네요.


B의 알짜힘은 왼쪽으로 ma, C는 오른쪽으로 2ma. 이렇게요!


굳이 하자면, A도 3ma이겠고요. 


모든 물체의 알짜힘이 다 나왔고, 우리가 아는 힘은 A에 작용하는 중력(3mg)뿐입니다.


아는 힘이 저거뿐이니 저걸 이용해야 할텐데요,,,


우리가 자주 하는 거 해봐야죠 뭐.


도르래 및 줄로 연결되어 있으면 한 물체로 바라봐보는거??


전체 알짜힘 = (3mg+f1-f2) = 6ma 이 정도는 해놓고 갈 수 있겠죠?




오 그리고, 실을 끊기 전후에 B와 C가 가속도가 같다는 것도 보자고요.


B와 C 입장에서 가속도가 크기는 동일한데 방향만 바뀐다고요?


B와 C 하나로 보니까 질량은 3m


F=ma -> 왼쪽을 +라 하면, +6ma(A,B,C)-> -3ma(B, C). 오 9ma 바뀌었군요.


실을 끊은 것 뿐이니, 실을 끊기 전후 바뀐 힘의 크기는 A의 무게뿐이네요.


3mg=9ma 따라서 a=1/3*g라는 것도 문제 읽으면서 보입니다. 


펜 필요했나요..? 딱히,,, 말로 써놓으니 긴거지, 사실 지금껏 한거라고는 


문자 잡는 거랑 식 딱 하나; 3mg=9ma 이거뿐이었습니다. 





시뮬레이션_


A와 B가 C보다 무거우니 왼쪽으로 움직이겠죠? 


그러다가 실p를 끊으면, A는 혼자 떨어지고, 


B와 C는 오른쪽으로 힘을 받으면서 증가했던 속력이 감소하다 반대로 운동하겠네요!  


<보기> 문제니까요, 차근차근 ㄱㄴㄷ을 따라가며 풀어봅시다!



 같은 말이 같은 말인줄 알기_


q가 B를 당기는 힘의 크기 = 장력 = q가 C를 당기는 힘의 크기


실 끊기 전: 장력>f2 (C가 왼쪽으로 이동하니까)


실 끊은 후: 장력< f2 (C가 오른쪽으로 이동하니까)


따라서 ㄱ은 참이네요. 아직까지는 정말 펜이 필요없죠?


a를 구하라네요! 이미 구했는걸... a=1/3*g인데,, 맞네요 ㄴ!!








 A의 중력 퍼텐셜 에너지 감소량? 


같은 말이 같은 말인줄 알기_


p를 끊기 전에 에너지 보존 법칙에 의해


B와C의 운동 에너지 증가량 합은 A의 운동에너지 증가량(A 질량 = B질량+C질량)이므로


그림에 의해 당연히 A 퍼텐셜 에너지 감소량이 A 운동에너지 증가량보다 큰 것임을 알 수 있습니다.


(저 그림에 익숙한 사람은 A와 B의 역학적에너지를 덜어다가 C에게 주는 구조임을 알 겁니다.)


따라서 ㄷ도 해결.




여기 식이 낄 곳이 없습니다. 


그저 머릿속으로 시뮬레이션해보고,


내가 아는 힘이 뭐지 생각해보고( 여기선 A의 중력이었죠),


같은 말이 같은 말인 줄 알고,


그러면 문제가 풀립니다. 


이 느낌을 잘 간직하시고 이렇게 되려고 노력하는 것이 물리 공부입니다.  




다음 문제 뾰로롱



-----------------------------------------------------------------------------------------------------------





발문 읽읍시다. 


발문 독해&작전 짜기 with 그림_


A는 V로 등속도, B는 정지로 출발했다가 등가속도 운동-> 등속도 -> 다시 등가속도.


A와 B는 R과 S를 동시에 지남.


종합해보면, R과 S까지 각각 걸린 시간이 동일하게 B의 속도를 찾아라


정도로 정리되네요.


당연하죠. 역학이니까 V 찾으면 다 된다고요.





R에서 속도를 뭐 아무거나 잡아보죠. X라고 해봐요.


그럼 B의 경우 Q까지 평균속도가 X/2, Q에서 R까지는 X. 


각각 걸린 시간은 2L/X, L/X. 총 R까지 걸린 시간은 3L/X겠네요.


오 A가 걸린 시간은 어차피 등속운동이니까 2L/V인데? 


둘이 같겠다. 그러면 X는 3V/2군요. 





R에서 S까지도 걸린 시간 같은데? 


거리가 같네?


평균 속도도 같네?


A 평속이 V니까, B도 V겠네?


초기속도는 X니까 3V/2겠네? 평속이 V일려면 등차중항 써서, 나중 속도가 V/2네?


오 B 속도 다 나오네.


여기 이차 방정식이나 여러분이 머리로 못 풀 계산이 있나요?


아니요,, 그냥 펜으로 속도만 쓱쓱 끄적여 놓으면 되는 수준이잖아요.


막말로 눈으로 풀 수도 있는 정도라고요...


ㄱㄴㄷ선지는 그냥 O/X 판단하시면 되니까 풀지 않겠습니다.  




-------------------------------------------------------------------------------------





어우 이건 무서운데요..? 최대한 눈으로 풀어볼게요.


20번 하나 정도는 연필로 풀면 안되나?




발문 독해&작전 짜기 with 그림_


hA=ah라고 할게요.


(가)에서 용수철 d만큼 압축 -> 저장된 에너지를 E라고 해볼까요.


그럼 (나)에 저장된 에너지는 2d 압축이므로 4E겠네요.


A와 B가 빗면을 스르르 내려오다가 쾅! 


이런, 충돌을 한 이상 에너지가 보존된다는 보장은 할 수 없군요.


오로지 운동량 보존..! --> 아이고 속도를 일일이 다 구해야겠네요,,,,;;;;


그리고 중간에 마찰인지 뭔지 힘이 작용해서 


올라갈 때고 내려갈 때고 등속도 운동을 하는 구간이 존재하네요.


즉, 빗면을 내려갈 때는 2h만큼의 위치에너지가 그대로 손실나고,


올라갈 때는 2h만큼 운동에너지가 증가하겠네요.(올라갈수록 속도가 감소해야 하는데 그대로니까)





생각한대로 식과 계산 짜보기(계산이 있긴 해요, 다만 사칙연산이니 살살 합시다)_


B가 (가)에서 수평면에 도달했을 속도를 3v라 하면, (나)에서는 v겠네요(9h:h).


B는 속도 변화량이 방향고려하면 4v인거고, 근데 질량이 2m이니까


운동량 변화량이 8mv이고,


A는 운동량 변화량이 B랑 같고, 질량은 m이므로 속도 변화량이 8v네요.


문제에서 충돌 직전, A와 B 속력이 같다며, 


아 A는 3v로 들이받아서, 5v로 튀어나오겠다. 




우리가 v를 잡은 기준은 B가 h 높이에서 만들어내는 속도를 v로 만든거였죠?


오호라, 그럼 A도 v라는 속도면, h 높이를 올라가야 하는건데..?


근데 충돌 후 5v? --> 25h를 올라가셔야 하네요.


충돌 전 3v는요? --> 원래 9h를 떨어졌어야 하죠.


근데 둘다 변수가 하나 있습니다. 바로 용수철에 저장된 에너지!!!



-----------------(여기까진 눈으로 가능. 근데 뒤는 식이 조그으으으음 있으니 살짝 계산하자고 생각합시다

                    저는 머리로 할게요 ㅜㅜ)



 앞으로 H를 A가 h만큼 높이에 있을 때의 위치에너지라고 해봐요.


내려가는 건 3v니까 9H=E+(a-2)H --> E=(11-a)H


올라오는 건 5v니까 25H=4E+(a+2)H --> 4E=(23-a)H=(44-4a)H


따라서, a=7--> hA=7h. 



-----------------------------------------------------------------------------------------------



마지막 이거 한 줄 빼고는 다 머리로 되죠?


(마지막 줄도 하려면 하지 않나..?)


하고 싶은 말은 계속해서 머리를 쓰려고 노력하고,


발문 보고 짠 작전이 끝까지 들어맞는 일을 많이 경험하고,


같은 말이 같은 말인줄 알아보고,( 식 쓰다가 뭔가 같은 숫자가 나오면 이유를 찾자고요!!!)


이렇게 하는게 물리 공부라는 걸 너무 알려드리고 싶었습니다. 


기만 목적의 눈풀물이 아닌,


단기간 최대의 효과로 물리 실력을 끌어올리는게 눈풀물의 목적이었습니다.


비역학 시간 단축도 많이 문의주셨는데, 이는 다음 칼럼에 쓸게요 ㅜㅜ


여기다가 붙이려했는데 너무 길어졌습니다. 


읽으시느라 고생했습니다.( 읽으면 는다는데 독자가 고마워야지 너가 왜 고마워해?)


다음 칼럼에서 또 봅시다.  



rare-Apple

0 XDK (+500)

  1. 500