머리 식힐 사람 들어오셈 ㅋㅋ
게시글 주소: https://orbi.kr/00038326138
오늘은 제가 그동안 타이핑으로만 쓰던 걸 드디어 그래프랑 엮어서 쓸 수 있게 된 210921 가형 풀이를 써보겠습니다.저도 이거를 그냥 타이핑 수식만으로 보이자니 참 막연했는데, 이제 사진과 한글 캡쳐를 쓸 수 있으니 굉장히 자유롭군요.
문제)
풀이) y=f(x)와 y=g(x)의 교점에 대해 물어봤으므로, 우선 y=f(x)의 치역 범주에서 실수 a의 범위를 생각하고 g(x)의 근 중 g(x)=a의 실근의 존재성을 따져봐야 한다.
실수 a의 범위가 나왔으므로 y=g(x)에서 이 범위 내의 a값에 대해 g(x)=a의 실근이 모두 포함되는지에 대해 따져봐야 한다.
(g(x)=a의 실근 전체의 존재성을 굳이 엄밀히 따지지 않는 것은, 조건에 의해 g(x)=a의 실근 전체에 대한 파악이 아닌 그 중 일부가 f(x)=a에서의 실근을 모두 포함하느냐에 대한 것이기에 실수 a가 구간 [-3,3] 안에 있음만 파악하면 된다.)
y=g(x)와 y=f(x)의 교점 중 가장 작은 양의 실근을 alpha에 대해 먼저 조사해보자.
에서, 연속함수 y=f(x)의 치역 범주는 구간 [1,3]이므로 사잇값 정리에 의해,
임을 알 수 있다. 이해의 도움 상 그래프를 그려 표현하면 다음과 같이 이해할 수 있다.
y=g(x)를 생각해보면, 위에서 얻은 alpha의 범위를 이용하면
이므로 g(x)=a를 만족하는 실근 x에 대한 두 부류의 일반항
에 대해, 주기가 같은 두 일반항의 임의의 두 실근의 차이의 최솟값 0보다 크고 pi/6보다 작다는 결론을 낼 수 있으므로 두 일반항은 임의의 정수 n에 대해 일치하는 x 값이 존재하지 않아 서로 독립적인 실근의 집합임을 알 수 있다. 이를 같은 원리로 y=f(x)에 대입하면,
이것도 같은 이유로 두 일반항이 서로 독립적인 집합임을 알 수 있고, 임의의 정수 n,m
에 대해,
이 성립함을 알 수 있다. (단, 여기서 주의할 것은 임의의 정수 m에 대한 식에서 이와 1:1 대응하는 정수 n이 항상 존재함을 나타낸 거지, 임의의 정수 n에 대한 식에서 이와 1:1 대응하는 정수 m이 항상 존재함을 나타낸 게 아니다. 사소한 차이로 보여도 이에 대한 이해가 조건에서 제시한 충분조건을 필요충분조건과 혼동 없이 이해했는지를 판가름한다.) (나머지 2가지 케이스에 대해서는 왜 고려하지 않느냐면, m=0, n=0에서 성립하는 두 일반항 묶음에 대해 서로 같은 집합 안에 들어있음을 알 수 있고, 일반항에 대한 두 집합이 교집합이 없는 서로 독립적인 집합임을 위해서 보였으므로 곧바로 위와 같이 정리할 수 있다.)
이를 정리하면,이 되고, 위의 식은 정수 m,n에 대해, 임의의 정수 m을 대입해도 n도 정수가 되어야 하므로 자연수 k는 12의 약수임을 알 수 있다. (만약 k가 12의 약수가 아닌 수라면, m=1을 대입할 시 nk=12를 만족하는 두 자연수 순서쌍(n,k)에 대한 모순을 이끌어낼 수 있다.)
같은 논리로 아래의 식도 적용하면, k는 6의 약수임을 알 수 있다.
이 두 가지 식을 모두 만족하는 k값에 한해 문제의 조건을 만족하므로 자연수 k는 6의 약수인 1,2,3,6 이 가능함을 알 수 있다.
따라서 조건을 만족시키는 자연수 k의 개수는 4이다.
답을 내는 데는 의외로 간단하지만, 이를 이해하는 논리가 상당히 복잡한 문제였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
유전 막전위 근수축 >>>>>> 역학인데 진짜로 아니 생명 진짜 왜하는지 모르겠네
-
만넌필 케이스 둘중에 뭐가 이쁨? 실링 밀랍 장식 자체는 1인데 전체적인 감은 2라 고민되네..
-
한무당들 0
볼때마다 빡치네 지 주제를 알아야지 씨발
-
그냥 이과가 생윤하는게 이런 느낌일까? 온몸으로 좆노잼이라고 몸이 가부함...
-
삼반수 0
화작미적생1지1 24수능 54245 25수능 23222 이렇게 받았는데 한번 더 해볼만할까요..?
-
이제부터 세계 최고의 교수님이십니다
-
3덮때 노베라 3점 맞고 한 달동안 4덮 자이스토리+개념 한 달 공부했어요 진도...
-
배달이 뒤지게 안 온다 ㅅㅂ
-
벌점을 두번받앗다는데 도대체멀한거야
-
첨보는내용을 갑자기 복습노트라면서 올리시더니 거기서 와장창 문제를 내는건
-
나 협찬받음 3
요즘 방구를 홍보중임 공공장소에서 마구 뀜
-
강e분? 13
내가 다 이겨
-
뉴진스 팬들 무지성으로 르세라핌 아일릿 죽이기 ㅈㄴ 하고 뉴진스도 알면서 방관하고...
-
평소에 수능 교육청 다 1-2등급 기본으로 떴는데 시간부족으로 도표 3문제...
-
지방대 특수교육과 다니는 사람이 요즘 수능 너무 쉽다길래 대체 특수교육과 공부가...
-
못참겠다 0
-
똥 마려운데 5
어떡해
-
친구관계 비롯해서 다 말해드릴 수 있음
-
내가 그렇게 못가르치나
-
과외 학생 입장에선 한 번에 한 과외 선생님이랑만 상담 가능한가요?
-
고등학교 재입학 1
검정고시 합격했어도 재입학 가능하다는거같은데 실제로 그렇게하신분 계시나요?
-
진짜 ㅈㄴ 정신사나워서 집중이 안되네 걍 백색소음 들으면서 해야하나 하... 진짜...
-
잘지내시나요 저는이학교에서 전교한자리수를유지중이에요 중앙대원서를안쓸거같습니다…...
-
최근들어서 느끼는건데 원래 앞에선 안그러면서 등에 칼꼽는사람들이 최악이라고...
-
과외 학생 입장에서요
-
구함. 재밌어용
-
"4월 월급 왜 이래?" 직장인 1030만명 깜짝…건보료 20만원 더 낸다 1
임금 인상·성과급 지급 등으로 지난해 보수가 오른 직장인 1030만명이 이달...
-
국주티콘보유중
-
진짜 처음 들어보는 대학 사범대 다니는 사람이 요즘 대학가기도 너무 쉽고 수능도...
-
외적너무으악 1
외적그만할래
-
차단당할까봐 모밴으로 쓰는데 어찌저찌 다들 보시더라고요
-
아직 자세한 계획은 안나왔나요? 검정고시생들은 어떻게 되는거죠... 그때까지도...
-
좋아요 1등 댓글: 쟤는 진작 차단했음
-
국어는 또 유기의 길을 걷는다 연계주간지만 사서 주간지랑 언매복습만 하고 유기한다...
-
국어 평균이면 고1때 국어랑 2,3학년때 독서 문학 언매도 포함임?
-
근데 난 진짜 차단 많이 당한 듯 10명 넘게 봄
-
설레는기분
-
요즘 오르비 왜 자꾸 병신같은 댓글에 좋아요 누름? 5
팩트는 진짜 병신이라는거임
-
난 진짜 똥글만 쓰는데
-
차단확인칼럼) 3
https://orbi.kr/00072843353/%255B%EC%B9%BC%EB%9...
-
커플 미해체시 처단.
-
헐 나 차단 당했나봐 10
내 댓글만 좋아요 안달림
-
물1 공부기록 0
기파급: 4/9-진행형 상 편은 역학파트인데 엊그제 마무리 하 편은 비역학인데 아직...
-
지웠다
-
화1 N제 1
화1 단원별로 된 N제 같은 건 없을까요 ㅜㅜ
-
쌤이 외우는거 의미없고 평소 영어실력이 중요하다는데.. 그냥 무지성 통암기가...
-
ㅎㅎ...
-
205일? 2
난 571이라고 뜨는데 버근가

그래프도 매트랩써서 예쁘게 해주세여그럼 고용해주세요. 좀 비쌉니다.
그래프 그리면서 벅벅 푼 나....
머리 식히려고 들어왔으나 210921인걸 보고 그대로 댓글창까지 내림..
에이 머리 식히기죠! 본 취지에 부합하는데

머리식히는 문제라고 해서 평가원 쉬운 4점 인줄 알았더니 ㅅㅂ 작년 메가 기준 오답률 2위 문항 심지어 가형?엥 왜 엑박뜨지
칼럼 가독성 up되네요 매번
오타인것 같은데 맞나요?
빨강이랑 뒷 부분이랑 완전 같은것 같네요
앗, 수정했습니다. 감사합니다.
혹시 바쁘지 않으시다면 이 글 관련해서 쪽지로 질문좀 드려도 괜찮을까요 .. ? 꽤나 어렵네요 ,,
네
박승동쌤도 수식으로 바로 풀어버리시던데 유단자들은 다르긴 하나봄 ㄷㄷ
감사합니다 :)
미적하면 이런거 해야돼요?
확통하길 잘햇다
근데 저건 지금 봐도 수능 트랜드에선 살짝 너무하다 싶은 것도 있어서, 저런 난이도로 나온 건 저게 가형이었으니 가능했던 듯합니다.

살짝 너무한 게 아닌 거 같은데요 ㅎㅎ보고 깨달았습니다 내년 논술부시러갈게요
누군가의 풀이랑 비슷한데 설명이 훨씬 깔끔하네요
스크랩했습니당ㅎㅎ
오 장재원쌤 풀이랑 같은 방식이네요 당시 수업때도 어려웠는데 이것도 역시 어렵네요..

수능끝나고 노예님 글 하나씩 정독중인데 흥미롭고 유익한 내용이 정말 많네요 감사합니다