공간좌표상에서 직선끼리의 거리에 대해 얘기좀 하실분
게시글 주소: https://orbi.kr/0003826294
1, 평행한 두 직선사이의 거리 구하기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어디까지라고봄? 그냥건동홍가서새벽에서울가는데욕심인가싶어서써봄..
-
밤새고 어제 9시에 자서 6시에 일어남 1시간만 더 잘ㄲ
-
어느 학과가 대기업 취업에 더 유리할까요? 그리고 인하대 반시공 계약학과인가요?
-
작곡하고싶다 1
컴맹/자본/손가락병신이슈
-
기차지나간당 6
부지런행
-
핫도그하나 닭곰탕 한그릇 과자 한봉 비엔나 세개 메추리알 다섯개
-
작년 수능에서는 화작 0틀 백분위 91인데 6,9모에서는 하나씩 틀렸었습니다. 제가...
-
주식 들어가면 0
아오 내가 들어가면 쳐 내리네 ㅋㅋㅋㅋ
-
눈온당 0
-
출석부! 출석부 출석부! 지하철! 지하철 지하철! 공산당! 공산당 공산당! 진짜...
-
스타킹 0
찢기
-
이시간에
-
불면증.. 4
원하는 기상시간보다 45분이나 일찍일어나버렸다
-
잘까 4
흠
-
안자면 큰일날듯 1
옯붕이들 ㅂㅂ
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
동서연고. 1
무요.. 왜요.. 혼잣말이에요..
-
다시 했을 때 메디컬 가능성 얼마나 보시나요?
-
잘때가된건가 5
슬슬
-
발 300 11
손도 많이 큼
-
꾸준히 햇으면 꽤나 올렷을거 같은데 오랜만에 하려니 계속 같은 곳에서...
-
ㅅ..ㅂ 요즘에도 한달에 한번은 뛰다가 무조건 삐는 것 같다
-
키작은 사람이 6
큰 사람보단 끌림
-
마스터 등반 시작
-
재밋는건같이해요
-
귀가 ㅇㅈ 2
사실 아까 퇴근하면서 찍었어요
-
키작으면 좋은점 4
애들이 귀엽다고함 헤헤
-
ㅋㅋ 난 작년에 2
공부하는거에도 기출이 잇엇음.한국 기출만 봤을 때2008년도부터 2023년도 기출된...
-
새르비 화력 테스트 18
유동인구 10명 넘을까?
-
팩트는 0
마이 베스또 프렌드들은 몇시간째 디코를 하며 롤을 하고 잇다는거임.지금도 디코에...
-
굿모닝 1
ㄱㅁㄴ
-
오르비 굿밤 2
전 자러감
-
서버 어머같네요 0
ㅎㅎ
-
맞팔 구합니다 3
현역학생입니다 물리러에요
-
ㅇㅂㄱ 1
수업가야겠군
-
연구원인데 떼잉,,삼각함수랑 수열을 훨 잘함 지로함에 비하면
-
ㅇㅈ 13
새벽이니까 다행일듯 내 손임 펑~~
-
학벌딸 치고 싶어서 인거 같음 그냥 병신 한남 자존감 밑바닥 루저새끼라 뭐라도 하나...
-
안 맞게 공부를 하고 잇음 ㅋㅋ,,내 공부 이론대로 하는 공부가 좀 상당히 피곤함....
-
내 차단리스트 1
없음뇨
-
침대에서 자면서 망상함
-
지로함 6
평가원에선 잘 모르겟는데 (어렵게 안 내서), N제같은거 보면 되게 재밋는 문제...
-
무슨 이미 의대 붙은 것마냥 의대 성적 되면 의대를 갈까 설대를 갈까? 의대 가면...
-
수강 신청 0
막 20학점씩 신청 해놓고 나중에 빼는 방법 좋나요? 예상대로 안될 때가 많으니...
-
기출 좋앗던거 3
241122 (개 잘 만든문제)121130 (함수의 증가속도, 아주 중요한 관점)...
-
국회증언법이랑 양곡법 이런거 비판하는 내용있으면 너무 그렇지??..
1-방법 1에서 두 점 사이의 벡터랑
직선의 방향벡터랑 수직이라는 보장이 없지 않나요?
-------o--------------
-----------------o----
이런 경우에요(o가 점)
1-방법 1에서 두 점 사이의 벡터랑
직선의 방향벡터랑 수직이라는 보장이 없지 않나요?
-------o--------------
-----------------o----
이런 경우에요(o가 점)
그니깐 수직인경우를 구할라고 내적해서 0일때 관계식을 구하는거자나여 수직일때 두점사이거리가 직선의 사이 거리니깐요
아아 그 소리였군요 ㅋㅋ
도서관에서 하나 알려드릴게요. 기대하셔도 좋음
안녕하세요, 저 포만한에 포그슨입니다 ㅎ
네이버에 '공간 두직선 사이 거리'에 대하여 검색하다가 이 글을 보게됬어요.
GeonuPark님의 방법이 궁금해서 오르비에 가입까지 했네요 ㅎㅎ
죄송한데 시간나시면 어떤건지 알려주실수있나요?! ㅎㅎ
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=3735670&sca=&sfl=mb_id%2C1&stx=jsrang
2번 질문에 대한 답은 링크로 대체합니다.(뒷부분만 읽으셔도 될듯)
위에 쓰인 방법도 맞습니다. 링크는 좀 다른 풀이입니다.
2번에서 윗분님이 링크걸어놓으신 글에서 나온 "평행하지 않은 두 벡터의 수직인 벡터"를 구하는 테크닉을 이용해 두 직선에 수직인 임의의 벡터 h를 구하고 두 꼬인위치에 있는 직선위의 임의의 점 아무거나 편한거로 잡아서 두점 이은 벡터를 k라고 하면 |k·h|/|h|를 하면 두 꼬인위치에 있는 직선의 거리가 나옵니다. 근데 ebs에서만 써먹어봤지 기출에서는 쓸데가 없었다는ㅋㅋ
0. 두 꼬인 직선의 직선의 방정식에서 각 뱡항과 각 지나는 점의 좌표를 안다면
1. 두 직선에 수직인 방향을 구하면 최단거리가 되는 선분의 방향이 될거에요
2. 이걸 축으로 하고 처음의 두 직선을 헬리콥터 날개처럼 돌리면 평행인 두 평면이 나와요 최단거리와 두 평면사이의 거리는 같을거에요
3. 수직방향과 지나는 한점으로 평면의 방정식을 만들고 나머지 한점과의 거리를 구하면 최단거리를 구할수 있어요