-
수능때까지 12만원에 메가패스 쉐어받으실분 구합니다! 아이디 비번 먼저 알려드려요...
-
노래 불러야지
-
정상도착 6
ㅈㄴ힘드노 287.7m높이인데 노래부르면서 등산 그래서 더 숨참
-
ㅈㄱㄴ
-
지듣노 0
가사가 진국임 나만 아는 밴드 파라솔을 다들 알아주세요. 대한민국 최고의 저혈압 락 밴드.
-
집이 여고 근처라 항상 지나가야하는데 4시20분쯤 지나가게 되면 버스정류장에 있는...
-
어디서 안나온다고 들었던거 같은데, 원리합계 수능에 나오나요?
-
이게 무슨뜻임? 5
고백 갈기라는거임?
-
이쁜데 ㅇㅇ... 과잠바는 검은 색인데 학교잠바는 하늘색도 잇네
-
동네 고대생 친구가 대진연 동아리 임원이던데.. 가끔 시위나가고 학교에서...
-
오늘 덥네 2
오랜만에 걸어서 물리력 하락하는중
-
ㅁㅊㄷㅁㅊㅇ
-
왜지 안 이랫는데
-
수업시간에 자고 학교끝나자마자 롤 새벽6시까지 달린다음 2시간자고 학교가서 마저자고...
-
아침을 안먹고 갔더니 배가 너무 고팠다. 뱃가죽이 등에 붙을정도로 정말 배가...
-
역시 자본주의 화력 ㄷㄷ
-
밥 먹는데 12
누가 자꾸 힐끔 보길래 흐음 햇는데 설마 나 오르비 보는거 들킨건가,,
-
장발 다 자름
-
토깽이끼고잔다 ㅂㅇ
-
그리고 좋은 문제집 뭐 있을까요.
-
뉴런 수1수2 0
고2고 다 듣기엔 시간이 너무 없어서 몇단원만 들으려하는데 수1수2 중에서 좋은...
-
국방부, 사직 전공의 880명에게 입영 통보… 나머지 2400명은 최대 4년 대기 3
군의관·공보의 입영 대상자 확정 국방부가 27일 올해 군의관·공보의 입영 대상자를...
-
나 밀가루먹으면 간지러워 근데 나가서 먹을때 밀가루 아닌게 없어 ㅠ
-
약사회의 압박이 통하긴 했나보네요 그런데 오히려 상처뿐인 승리? 같기도 하고 그냥...
-
질문 0
추가모집 온 거면 다 합격 가능한 건가요. 2시까지 검정고시 서류 내라 했는데 못...
-
보기만해도...
-
날씨가 따뜻해지니까 옷사야지
-
날씨 너무 좋다 0
ㅈㄱㄴ
-
인생최대의고민 16
-
강기원 0
11주차부터 강기원 듣는데 ㄱㅊ을까여.... 이전주차 영상들은 필요하면 들으려하는데...
-
레깅스 말고 8
스타킹
-
그럼 억지로라도 더 하려하겠지?????
-
작년 새기분 0
국어 작년 평가원 수능 다 1인데 작년 새기분 해설교재로 혼자서 기출 다시...
-
오늘 산 레깅스 ㅇㅈ 29
옯붕아 여기 좀 앉아봐라.
-
대구한식으로 진짜 1000점인지 궁금하네요 1000이면 생각보단 엄청...
-
진지하게 메가 따라잡겠는데?
-
활동적인건 싫어해서 보드게임 하면서 친구 사귈려고 하는데
-
ㅇㄱ ㅈㅉㅇㅇ? 9
https://m.dcinside.com/board/sdijn/1789052
-
이것중에 뭐 파실 분 없으신지..ㅎㅎ
-
솔직히 이 시즌에 오르비하고 있다는건 진짜 찐따라는 거임 4
만날 친구도 없어 수험생인데 공부도 안해 참 불쌍함 넵
-
드릴푼거 쭉한번 보는데 이상한거 발견 드릴5 미적 미분 14번 많이 억지긴 한데...
-
내일 놀러가서 오늘불태우고 갈 생각이었는데 몸이 제정신이아님 잘잤고밥도잘먹었는데...
-
나였으면~ 1
우우우
-
개인적으로 1. 김프가 음수 2. 비트코인 가격이 75k미만 이면 현물로 홀딩 괜찮아보임
-
농어촌의대 0
농어촌이면 대충 수능 몇개틀리면 의대가나요?
-
전엔 신경 안썼는데 미3누 허수 판독기보면 대부분 예쁜 애들에 다 화장 빡세게...
작년에 역함수 때문에 고생 많이 했는데... 참 좋은 글이네요
스스로 겪어본 사람만이 그 참 맛을 이해할 수 있죠^^
쪽지확인부탁드립니다
답변드렸습니다. 무엇이든 너무 심각하게 고민하진 마시길~
(일단 위의 풀이에서 f와 g를 합성하는 과정은 없습니다만..)
y=g(x)가 y=f(x)의 역함수라면 말씀하신 것처럼 g(f(2x))=2x로 나와야겠지요.
하지만 y=g(x)는 y=f(2x)의 역함수이므로 f와 g를 합성하면 그대로 처음에 집어넣은 정의역의 값이 튀어나온답니다.
감사합니다^^
안녕하세요, 나의 친구 역함수님^^
.....좌변이 y가 아닌데도 함수라고 할 수 있는거에요...??
y=2x를 x=y/2로 쓰면 안된다는 말씀...?? 함수를 어떤 형태로 쓰건 그건 쓰는 사람 맘이랍니다~
같은 함수인지를 보려면 f나 g라는 표현에 현혹되지 마시고, 함수식 안에 담겨있는 변수들의 관계에 변화가 있는지만 보시면 됩니다.
y=f(2x)의 역함수를 구할 때,
x와 y를 바꾸는 건지 2x와 y를 바꾸는 건지 등등이 헤깔릴 때에는
y=4x+3=f(2x) 와 같이 아무 식이나 하나를 놓고 생각하면 더 쉬울 겁니다.
그럼 X=4Y+3=f(2Y) 가 역함수인 게 좀더 쉽게 보이시죠?
이 역함수를 Y를 기준으로 정리한 게 Y=1/4(X-3)=g(X) 일 뿐이란 것도 바로 알 수 있네요.
결국, X=f(2Y)나 Y=g(X)은 똑같은 y=f(2x)의 역함수임이 확실해지죠?
이처럼 구체적인 예시를 사용해서라도 확실히 이해하고 넘어가야만
다음에 어떤 역함수 문제가 나오더라도 자연스럽게 해결할 수 있습니다.
이 글의 마지막 문단은 수학을 잘 하고 싶은 모든 학생들이 음미해봤으면 좋겠습니다^^
1.여기서 Y=g(X)에서의 변수 Y,X랑 X=f(2Y)에서의 변수X,Y가 같은건가요?
위에서 X=f(2Y)가 역함수 인건 알겠는데 왜 이게 Y=g(X)랑 변수가 같은지 모르겠어요.
저는 저걸 잘 모르겠어서 y=f(x)의 역함수를 h(x)로 가정해서 위에 백경린T가 푼것처럼 X,Y바꿔서
g(x)=h(x)/2라고 놓고 풀었거든요.
위에 백경린T가 설명한 첫번째 질문과 두번째 질문 다ㅂ에서 한것처럼 풀어주시면 더욱더 감사드리ㅂ니다.
2.위에 평가원 문제조건이 f(x)가 실수전체에서 미분가능하고 증가한다고 써있는데
f(ax^n),f(sin^nx),f(e^x).....등등 f(x)안에 x대신 다항함수 꼴이라던가 초월함수 꼴 등등이 들어가도 미분가능하고
증가하나요?만약 그렇거나 그렇지 않다면 증명이나 반례를 들어주시면 좋겠스ㅂ니다.(왠만하면 증명쪽으로,,)
그리고 만약 f(ax^n),f(sin^nx),f(e^x).....등등 요런꼴이 실수전체에서 미분가능하고 증가할때 역으로 f(x)가 실수전체
에서 미분가능하고 증가한다고 할수있나요?
3.f(x)가 미분가능할때 어떻게 f(2x)도 미분이 가능한지 당위성을 알고싶어
요. 문제에서 f(2x)의 역함수가 g(x)라고 제시가 되있어서 성리ㅂ하는건지, 그런말이 어ㅂ스면 성리ㅂ안하는건지 모르
겠어요.
4.실수전체범위말고 어느 구간으로 정의했을때 예를들자면 (2,3),[2,3]같은 열린구간 혹은 닫힌구간...
내에서 함수를 정의할수 있나요? 정의할수 있다면 이때 구간내에서 이함수가 미분가능하고 증가하면은
역함수또한 구간내에 정의할수있고 구간내에서 미분가능하고 감소하나요?
1. 곡선 y=f(2x) 위를 지나는 점은 (x, y)입니다. g는 이 관계를 역으로 대응시켜주므로 g(y)=x입니다.
이때, y를 새로운 정의역 X, x를 새로운 치역 Y로 잡은 Y=g(X)가 바로 y=f(2x)의 역함수입니다. (g{f(2Y)}=g(X)=Y)
하나의 함수를 표현하는 방법은 아래와 같이 매우 다양합니다.
Y=g(X) <=> Y=X/2 <=> X=2Y <=> X=f(2Y)
물론 이 밖에도 무수히 다른 방식으로 표현 가능하다는 걸 아시겠죠?
2. 나머지 질문은 기본적인 개념을 배우고 나면
스스로 충분히 이해할 수 있는 내용이므로 답변 생략합니다.
Y=g(X) <=> Y=X/2 <=> X=2Y <=> X=f(2Y)
요부분에서 Y=g(X) <=> Y=X/2,X=2Y <=> X=f(2Y)
이부분이 이해가 안가는데 이부분들에 대해
좀더 설명해주실수 있나요?
f, g, h, . .등은 출제자가 임의로 정한 함수의 이름일 뿐입니다.
f(x)=2x라고 놓든, f(2x)=2x라고 놓든 그건 놓고 싶은 사람 마음이죠.
변수 x, y의 관계, 즉 좌표평면에서 (x,y)가 나타내는 점들의 위치에 변함이 없다면
함수의 이름을 뭐라고 놓든 모두 동일한 함수입니다. 이해되셨나요?
Y=g(X) <=> Y=X/2저는 여기서 왜 X/2=g(X)가 되는지 이해가 안되요...
백경린T가 말씀하신 , g, h, . .등은 출제자가 임의로 정한 함수의 이름일 뿐입니다.
f(x)=2x라고 놓든, f(2x)=2x라고 놓든 그건 놓고 싶은 사람 마음이죠.
이거는 원래 알고있었던 거고요.
Y=g(X) <=> Y=X/2이게 왜 필요충분조건인지 이해가 안가네요.ㅠㅠ
또 반복되는 얘기지만, X/2=g(X)로 쓰든 X/2=g(3X)로 쓰든 아무 상관없습니다.
다만 주어진 문제에서 y=f(2x)의 역함수인 X=f(2Y)를 출제자는 Y=g(X)라고 이름붙였기 때문에 거기에 맞춰 예시를 든 것일 뿐입니다.
결국 함수의 이름을 뭐라고 붙이든 그 함수가 나타내는 X, Y 즉, 정의역과 치역이 같으면 무조건 같은 함수입니다.
감사하ㅂ니다 ㅋㅋ
이제 이해가 되네요 ㅋㅋ
휴~ ^ ^
dd
오오 드디어 5년간의 미스테리가 풀렸네요 ㅠㅠ
역함수 나올때마다 암기해서 그냥 이해도 없이 풀었었는데,
이제 이해할 수 있게되었네요 ㅠㅠ
감사드립니다.
머~언 옛날 그리스의 한 수학자께서 공부의 참맛을 한 마디로 정의해 주었죠^^
" 유레카 ! "
우와 역함수에 대해 잘 몰랐는데
이해가 잘되요 감사합니다!!
역함수는 y에서 x로의 역대응이고 화살을표의 시점과 종점만 뒤바꾼것이라고 수학개념서(숨마)에 써있었는데요 여기서는 그게 동일한함수라고 하셔서 혼란스럽습니다..
그리고 X=f(Y)는 왜 역함수가 되는건가요?x를 치역으로 보겠다는거죠?
f^-1은 f의 대응을 역으로 뒤바꿔주는 함수가 맞습니다. 하지만 변수 x, y를 함께 표시할 때는 조금 주의가 필요합니다.
예를 들어, y=2x <=> y=f(x)의 역함수는 y를 새로운 정의역 X, x를 새로운 치역 Y로 놓은 X=2Y <=> X=f(Y) <=> Y=X/2 <=> Y=f^-1(X) 입니다.
이때, f^-1은 새로운 정의역 X에 속하는 임의의 X값을 X/2로 대응시켜주는 함수라는게 보이시죠?
그렇다면 이 f^-1( )에 y=f(x)의 치역의 임의의 원소 y를 집어넣으면 어떤 값이 나올까요?
f^-1(y)=y/2=x, 즉 x=y/2 <=> x=f^-1(y)는 y=f(x)를 f^-1로 나타낸 동일한 함수일 뿐입니다.
다시 한번 잘 생각해 보세요. y=2x <=> x=y/2라는 함수식을 보고 누군가는 x를 집어넣었더니 y가 구해졌다고 할 수도 있고,
또 다른 누군가는 y를 집어넣었더니 x가 구해졌다고 할 수도 있지만, 어쨌든 대응하는 점 (x, y)의 집합이 동일하다면 같은 함수입니다!