[벡터] 서로 다른 두 벡터에 수직인 벡터 구하기
게시글 주소: https://orbi.kr/0003735670
그리 자주 나오진 않는 것 같은데 가끔씩 있더라구요.
꼬인위치에 있는 두 직선 사이의 거리 구할 때도 필요하고.
혹시 이거 구할 때 외적 쓰시는 분은 없으시죠..?;; 제 친구는 몇몇 그러던데 별로 따라하고 싶진 않네요.
수능을 준비하는데 뭐하러 외적까지 알아두는지...ㅋ
간단한 문제 하나로 제가 하고싶은 말을 끝내도록 하겠습니다~
첫번째 풀이는 가장 정석적인 풀이이고요, 제가 권하는 건 두번째 풀이입니다.
제가 쓴 풀이는 두번째 풀이가 더 깁니다.(사실 첫번째 풀이도 solved 라고 써버려서 짧아보이는 거지 연립방정식 계산하려면 막 더 써야 되요.)
하지만 두번 째 풀이에서 우리는 벡터a와 벡터b를 연산해서 x,y,z 성분중 하나를 0으로 만들 수 있다는 걸 알 수 있습니다.(어떤 쉬운 문제에선 두개가 0이 되기도 하더군요.)
이걸 잘 이용하면 암산으로도 두 벡터에 수직인 벡터를 구할 수 있습니다.(아 위에건 좀 숫자가 더럽긴 하네요.;그래도 문제 나오면 푸셔야되요. 계산을 싫어하면 안 됩니다. 전 단지 설명의 편의상 생략하겠습니다.ㅋ)
위에처럼 주저리주저리 안 쓰고 빠르게 푸는 것도 보여드리겠습니다.
거만해 보인다면 죄송합니다만, 저는 이 정도 식도 안 씁니다. 제가 알아볼 수 있게만 간단하게 써요.
지금 단지 이해를 위해 더 쓴 것 뿐입니다. 연습장이 아니니까 논리적인 흐름을 좀 보이기 위해서만 쓴 거에요.
그리고 이정도 유리수 계산을 암산으로 하는게 그렇게 천재적인 것은 아닙니다.
(그리고 암산으로 안해도 이게 더 빨라요. '단지 이런식으로 풀면 암산으로도 할 만하다.' 정도로만 이해해 주세요.)
이 풀이는 설명을 생략할테니까 이해가 안 되시면 댓글로 말씀해주세요^^
그런데 제가 위 두 문제에서 자꾸 단위벡터를 구하라고 하는 것에도 이유가 있습니다.
그건 꼬인위치에 있는 두 직선 사이의 거리를 구하기 위함입니다. 다음 문제를 볼게요.
문제 유형은 예전에 제가 풀어본 문제이고
숫자는 제가 만들었는데 생각보다 계산이 안 지저분해져서 다행이네요.;
오늘은 시험이 끝난 특별한 날이라 긴 글을 써봤습니다.
꼬인 위치에 있는 두 직선 사이의 거리를 구할 때,
두 직선 위의 점을 매개변수 s, t로 나타내고 "그 두점을 각각 시점, 좀점으로 하는 벡터가 두 직선의 방향벡터와 각각 수직이다."
라고 놓고 s, t를 구해서 두 점 사이의 거리를 구하는 것도 방법이지만 위의 풀이도 이해하면 디게 괜찮습니다.
뭐 마지막 풀이만 가지고 문제는 쉽게 풀어버릴 수 있지만 개인적으로 풀이를 외우기만 해서 푸는 건 좋아하지 않기 때문에
앞에 쓴 것부터 차례대로 이해해주셨으면 합니다. 도움이 되셨길 바래요.
그나저나 전 R의 자취가 평면이 된다는게 정말 신기하네요. 혹시 계산오류 있으면 지적해주시면 감사하겠습니다.
[수정] 마지막 부분에서 k를 |k|로 수정하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
확통 친구들 모고 풀때마다 14 21까지 잘 안풀리면 그냥 확통하자 이제는 늦은거...
-
보정 심한가요?? 김승모 2회 언매 84인데 백분 97이라고 나와서
-
친구가 보내주길래 어이없어서 봤네요..ㅋㅋㅋㅋㅋㅋ 미래에는 과목들이 다 통합돼서...
-
솔직히 설의는 누워서 공부해도 합격할듯;;
-
국어강사들 가르치는 비문학 방법 이정도가 전부 아님? 3
1. 정의된 문장에서는 단어보다 뜻이 중요 2. PS(QA) 구조 3. 앞내용과...
-
하 기분좋노 0
캬캬
-
오늘따라 바람 ㅈㄴ 순실순실하게 부는 것 같아 박제
-
예쁜 나의 예쁜 나이 25살
-
ㄴㅇㅅ
-
가령 y=tanx는 연속함수냐? 이런건 수능에도 안나오고 논술에도 안나옴 가장 큰...
-
이게 왜 진짜임..
-
태어나서 축구 딱 6번 해봤는데 골키퍼 하다가 머리 박음
-
7모 수학뭐임 0
7덮보다가 7모보니까 ㄹㅇ 천국이 따로없네 7덮 80점이었는데 7모 96점 나옴 ㅋㅋ
-
반수생 실전연습 0
실전연습을 9모 직전부터 수능까지 2주일에 한번정도 실전처럼 하루 날잡고 시간...
-
있을까요?? 예전에 배성민 선생님인가 이런 문제집 출판하셨던것 같은데 지금 딱 그런...
-
다이소 굿
-
ㄷ중복합격 포함? 작년 설연대고대 229명 여전히 잘나감 ㅊㅊ
-
지금 난 오우임 0
석이 나갔거든
-
개어렵네 케이스분류 ㄹㅇ 차라리 수능 확통 쉽게 나오는거면 이런문제는 버리고...
-
평가원마냥 애미가없는데 평가원이 만든거면...
-
귀여움의 재능이 있고싶음 모든 행동이 귀여워보이고 싶음
-
믿을만 한곳인가요?
-
수특으로 수1수2확통 개념을 잡은뒤 기출 6개년정도(20~25) 평가원, 학평...
-
생2 수완뭐냐 0
갑자기 퀄리티가 다 업글되었는데,,,,,,, 만든분들 기해분 풀고오심? 기해분에서...
-
직접 찾아옴....
-
칸트 : 인간은 자연적 본성을 따라야 하며 자기를 보존하는 것을 의무로서 지켜야 한다 0
-> 칸트는 모든 인간을 목적으로 대해야 한다고 주장하고, 그 모든 인간에 자기...
-
학창시절에 원주율 파이 소수점 100자리 외우는거 했는데 님들은 해봄?
-
지1 크로녹스나 화2 어나클 느낌으로다가ㅇㅇ 그나마 엣지가 비슷한데 이거만으로는 부족하고
-
고2 정시파이터인데 김승리 프로젝트 될 이랑 훈련도감 같이 들어도 될까요? 훈련도감...
-
오늘좀 이상하네 1
얼굴이 약간 작아진느낌드네 기분좋노
-
평가원 29번엔 사설과는 다른 ”정교함“이 있어서 시발 나도 왠진 모르겠는데...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
리트를 꼭 해야할까요 너무 어려워서 중간에 내신 핑계대고 하다가 말았는데 300제...
-
수특 지구과학 0
수특 지구과학에 케플러 망원경이 식 현상을 이용해 외계 행성을 탐사하는지 아닌지...
-
안동여고 안동여자고등학교입니다. 최순실 딸 부정입시에 이어 숙명여고 현씨 자매...
-
정시인데 입학할때 성적 어느정도여야 장학금받을 수 있는지 알 수 있는 방법이...
-
등급 변동의 여지가 완전히 사라져서 무한n수문화도 소멸 아마 나도 4등급대 받고 지잡인생살았을듯
-
내가 안 할 거 같음더 죄송해지느니 올해 끝을 보는 게 맞는 것 같다
-
선호도 어디가 우위임?
-
특히 수능에서는 더 안 나와요 표본이 너무 많잖아요 ㅋㅋㅋㅋ 그리고 이 담론에서...
-
단어는 워마 고등베이직,수능2000 외웠고 지금은 유베가는길 다 끝내가고 구문...
-
전 여기서 시간을 엄청썼어서..
-
검색하니까 2019년부터 쫘르륵 나온다
-
심심해 1
오늘은 나가기 귀차나서 집콕행인데 할게 업군요
-
22번틀 14찍맞 찍맞제외 92점 30번 108/161 약분 되나 안되나 108약수...
-
작년 기준으로 운동장도 못 가게 하고 말 그대로 시험 끝날때까지 건물 자체에서 못...
-
누구나 재능이 있다 16
는 논지로 말하니까 무한엔수러들이 생기는 거 같음 시력처럼 로그 스케일로 Liam의...
-
20~25정도까지만 있는 기출문제집 사려는데 ㄱㅊ을까요??
-
통통이고 6모 84 7덮 77정도 나왔어요 아는분께 상담을 받아봤는데 n제...
-
당연히 그정도는 가는 줄 알던데
[추가] 마지막 문제 답 13/7 이고
s, t로 매개화 해서 거리가 최소가 되는 점 P, Q를 구하려 하면(s, t를 구하려 하면)
계산 드럽게 복잡합니다.; 연습삼아, 또는 위 풀이랑 답 똑같은지 확인삼아 해보시는 것도 괜찮은데.
상당히 복잡해요. 참고하세요.;;ㄷㄷ
굳굳
저는 (x,y,z) 를 (x,y,1) 로 놓고 풉니다. 비율만 구하는거니 하나를 임의로 정해도 되겠죠. (대신 저 1이 0일경우 fail... 이 경우 그냥 다른걸 1로 놓으면 됩니다.)
오. 그런 방법도 있군요. 그런 생각은 못 해봤네요.ㅋ
뭐, 어떤 풀이든 자기 풀이를 찾고 그게 몸에 베이면 좋겠죠~ㅋ
근데 z=0이 되면 다른 1을 찾는 것보다 (x, y, 0) 으로 놓고 풀면 더 간단해지지 않나요?
예 맞아요 ㅎㅎ
근데 문제 복잡해지면 계산실수땜에 답 안나오는줄알고 그냥 변수 바꿔서 다시계산함 ㅎ
아ㅋ
저도 가끔 그런거 검토하려고 이 풀이 저 풀이로 계산해보고 그럽니다.; 괜히ㅎ
아 근데 '몸에 베이다'가 아니라 '몸에 배다' 가 맞는 표현이군요.;;실수 해명ㅋㅋ
저랑 같아요 ㅋㅋ
시험장에서 2012수능 21번 풀때도 그렇게했고
한완수에도 소개되어있고..
사실 저만 쓰는건줄 알았는데 한완수에 나와있어서 실망..
ㅋㅋㅋ
z=0이되면 다시한번더 x로 나눠서 (1,y',0)으로 하면 정말 문제가 쉬워집니다. 요번 ebs 교재 기하와벡터 수능특강에서도 이런 사고로 풀면 훨씬더 쉽게 풀리더군요.ㅎㅎ
아 그런데 궁금한게 꼬인위치에 있는 두 직선 사이의 거리 구하는게 기출이었나요?
정확한 출처를 모르겠네요.;
(일단 정석적인 풀이로 따졌을때)
거리를 구할 때,
매개변수로 표현하는 과정,
내적=0을 두번하는 연습 과정
연립방정식을 푸는 과정
등은 모두 수능에서 도움이되고 고교과정이지만
꼬인위치의 두직선 사이의 거리 구하는건 7차 평가원 기출에
나올리가 없어요.. 교과서에서 그런건 정의하지 않기 때문입니다.
크.. 그렇군요. 그럼 다른 시험 기출이었거나 어떤 사설에서 나온 문제가 원래 출처겠네요.
어쨋든 되게 얻어갈게 많긴 하더라구요.
그리고 하나 질문이 더 있는데 위에 제가 쓴 수식부분에서 R의 자취가 평면이 되는 걸 보이는 과정에서 두 벡터의 일차결합(이 용어도 교과서에 있는지 모르겠지만)이 두 벡터가 만드는 평면위의 임의의 벡터를 나타낸다는 걸 이용했는데 이 정도는 평가원의 입장에서 어떻게 볼까요?
일차결합이란 [linear combination]으로 대학교 2학년때 배울수있는
선형대수학 [linear algebra] 에서 배우는 Theorem 입니다. 고교과정에서 전혀 언급은안되지만
공부를 좀 깊게한 학생이라면 어렴풋이 이해는 하고있는 정도 입니다.
그것을 직접적으로 이용해야 간단하게 풀리는것은 출제되지 않을 확률이 높습니다.
가끔 평가원도 실수를해서.. 2013수능 포물선문제처럼 공식쓰면 1초만에 풀리는 ㅠㅠ
아 정말, 이렇게 고교과정과 아닌 것에 대해 너무 정확하게 말씀해주셔서 평소에도 도움 정말 많이 되네요.ㅠㅠㅋ
댓글 감사합니다.
전 이만 자러가야겠네요.; 내일 등교를.....아 왜 오늘 시험이 끝났는지 모르겠네요, 정말. 금요일에 끝내주지.;
오 연립방정식 풀이 말고
애초에 두 변수의 비율을 알아내고
한 번 더 계산해 나머지 변수의 비율도 알아내는 방법이네요
좋은듯 ㄷㄷㄷㄷㄷ
(보충설명)
수학에서 외적의 효용성은 두가지입니다.
1. 두 벡터에 수직인 벡터를 찾을 수 있다.
2. 두 벡터가 이루는 평행사변형의 넓이를 찾을 수 있다.
하지만 두 가지 모두
다음과 같은 방법으로 해결할 수 있습니다.
1 -> (1,a,b)라 두고 내적을 두번해서 수직인 벡터를 찾는다.
2 -> 벡터 a와 b로 이루어지는 평행사변형의 넓이는 root(a^2b^2 - (a내적b)^2)
따라서 외적에 의하여 유도되는 모든 공식은 고교과정에 의하여
유도되게 되어있고 일차삼피님이 수직인 벡터를 이용해서 구한 꼬인위치의 직선사이 거리 또한
사실은, 외적에 있는 공식을 고교과정으로 유도한 것입니다.
2번에 대한 설명은 없는것 같아서, 보충설명해봤어요. (1번은 일타삼피님이 유사하게 설명해주심)
그리고 2번을 활용하면 공간좌표에서
점과 직선사이의 거리를 구할 때, 내적없이 매우 쉽게 구할수 있지요..
쪽지답장가능하신가여???ㅠ
흑. 기계공 와서 미적분학만 배우니까 머리가 돌이 되었음..
교과외과정 최대로 지양 하는편인데
전 딱 이 부분만 외적을 쓰네요.
(3,4,5) (2,4,9)
(36-20,10-27,12-8)
적응되니까 훨씬 편하더라구요.
저도 이부분만 외적을 이용해서 푸니까 더 편하더라구요
두점의 좌
굳
우와 좋은 글 읽고 갑니다 감사합니다!