미분고수만 헬프
게시글 주소: https://orbi.kr/0003474787
f(x)는 x=0 일때는 0 그외에는 x2sinx-1
일때 x=0 에서 미분가능성을 조사해라
이런 문제인데요 사실 극한값계산하면 미분가능하다는건 알겠는데요 실제로
x2sinx-1 이 함수를 미분해서 x=0 떄려넣으면 값이 안나와요 왜이러져
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
는 모르겠고 47점맞아서 기분좋음
-
피자/순살 치킨 무조건 먹는다.
-
3모=~수능 인거 알지만 재미로
-
쓰면서 이표정 나옴 너무 힘들어요 하지만 사랑하는 오르비언들을 위해
-
속으로반가워함
-
5월 한 달 동안 이러고 살 것 같은데 일정표 훈수 좀 부탁드립니다
-
공부하기 싫다 1
오일러 코시 미방이 뭐냐고요
-
요며칠 너무 우울해서 공부 좀 덜 빡세게ㅡ햇는데 오늘 야자때 오랜만에ㅡ빡집중해서...
-
재수생인데 영어를 20년 내내 놓고 살아서 영어가 아예 노베고 단어만 좀 외워져있는...
-
논술 이번에 최저 신설이던데 어떻게 보시나요? 경쟁률 좀 줄려나요? 개인적으론...
-
다들 공부하느라 고생했어요 이제 저랑 놀아줘...
-
수능 끝나고 나한테 고마울거다 얘들아
-
이것때문에 남자든 여자든 상대방 이성 보는 눈높이가 쓸데없이 높아짐ㅠㅠ
-
잇올 끝났어요! 7
오늘 진짜 맛있게 공부한거 같네요 빡공 약속지켰습니다 이제 놀래요
-
올오카 오리진이 아니라
-
옛날에는 저기서 국수 바뀌었었음
-
이신혁 ㅋㅋㅋ 2
택배비 한번 보내면 750만원 든다던데 또 다시 보내나보네
-
국어 6등급이고 노베입니다. 김승리 오리진 다듣고 지금 올오카 theme4...
-
은테는 흔해졌어
-
내일은 월급 날 25
갖고 싶은 거 말해 언니가 사줄게
-
“미인계 우려”... 美, 중국인과 ‘연애·성관계 금지령’ 5
미국 정부가 중국 주재 정부기관 직원들에게 ‘중국인과 연애 및 성관계 금지령’을...
-
퇴근 0
앗싸엘지이김
-
여기다가 영어1에 사문50 정법 47이면 어디갈지 궁금하노
-
암은 왜있는걸까 16
암에걸린사람이 다죽었다면 암에 안걸리는 유전자만 남아서 암에 안걸리는 사람만 있어야하는거아님?
-
연관성이 있음?
-
흑흑
-
좌파 한국 우파 한국으로 나누자
-
지문은 그냥 읽히는데 문제가 그냥 뭔소린지 모르겠음 ㅠ
-
본인이 언매 92라면 실제 수능에서는 86이 뜬다는 건가요, 아니면 언매 86이...
-
정치얘기) 0
빅쇼트봣는데 새삼 명바이햄 대단하다 진짜
-
아니 근데 ㄹㅇ 똑같이 쓴거 같은데 광탈임;; 수리도 다 맞았는데
-
도달할수도 없고 도달해도 죽을뿐..
-
아니 무ㅏ 당연히 중요한건 알겠는데 얼마나 영향을 끼치는지..
-
다른 사람들이랑 의견 공유 좀 하고싶은데 우리나라는 정치얘기 쉬쉬하다보니까 못하고 있네여
-
2026학년도 국민대 논술 예상문제(논술가이드.. : 네이버블로그
-
안녕하세요 :) 이번 칼럼에서는 부정적분에 대해 다뤄볼게요. 적분 개념을 정확히...
-
제발 나를 납득시켜주셈뇨
-
감이 안잡혀요..
-
사쿠라가 3
후루마데
-
나도 통통이임 0
적분 존나나옴
-
루비쨩~ 하잇! 2
나니나 스키~?❤️ 맴돈다 머릿 속에
-
뭐로 기초떼는게 더 나을까요
-
쟤는 중간 보고 기말 보고 수행보고 중간보고 기말보고 수행보고 중간보고 기말 보고...
-
진짜 다년간의 경험이었는데 오늘 성공할거같음 포인트는 낮에 잠깐잠깐만 자고...
-
입시 뭐시기 해봣자 큐브 만원번게 단데 ㅋㅋ
-
다시 처방받으려면 낮은용량부터 시작해야할까요?
-
내 가 반 드 시 [모든것이 존재함] 을 증 명 할 것 이 다 1
LOGICAL MAGIC
-
내가 그렇지 뭐 0
살아오면서 은따 아닌적이 없었던거같음 나는 왜 사회에 섞일수 없는걸까
미가능성
우미분 좌미분 함수값비교ㄱㄱ
글고 미가능조건없으면아랫분말처럼
함부로미분햇을때 에러발생
도함수의그래프가 연속이라는보장없지않나요
x2sinx가 2xsinx인가요?? 함수가 2xsinx-1이면 x=0일때 불연속인데 미분 불가;;
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"고
설명되어 있는 교과서나 정석 같은 개념서들이 많고,
또한 실제로 그렇게 풀어서 100 중에 99는 이상이 없는데,
위와 같이, 도함수가 불.연.속.인 지점에서도
마찬가지의 논리로 접근하려고 해서 그렇습니다.
특정 점에서 미분이 가능하다는 말은,
1. 그 점에서 연속이고,
2. 좌우미분계수가 같다는 말이지,
도함수 차원에서 좌극한과 도함수의 우극한이 같되,
거기다 도함숫값까지 같아란 얘기는 아니니까요..
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"는 맞는 이야기지요. (존재한다면 대입하면 되고, 존재 안 하면 대입해봐야 소용 없고요.)
아마,
도함수 f'(x)가 연속인 경우(단, x=a에서는 연속인지 모르고..)에 f'(a)를 구하는 방법으로,
"(다른 점에서 성립하는) 도함수식 구해서 x -> a 로의 극한을 구하면 된다"라고 설명하는 개념서가 있는데 이는 엄밀하게는 틀린 설명이다..
라는 말씀을 하시려는 것이지요?
이거 0에서 미분이 가능해서 미분계수가 존재하고
f(x)가 0에서 당연히 연속이지만
f'(x)는 0에서 연속이 아닌 예인데
연속확장가능한함수 라고 하네요..구글링하시길
저렇게 한 점에서의 값만 따로 준 경우에만 이런일이
생기는듯
아 그리고 y= f(x) 그래프 그려보세요
Y축에 가까워질수록 진동하면서
0에 수렴하는 기함수입니다
x=a에서 미분계수의 정의
lim(h→0){f(a+h)-f(a)}/h
극한값이 존재하면 미분가능하다고 합니다
위엣분들이 좋은 말씀 해주셨는데 구체적 계산이 없어서 조금 더 첨언하겠습니다.
먼저 x=0아닐 때 y= x^2 sin (1/x) 라는 함수를 말씀하시는 것 같은데 작성자님처럼 표기하시면 못 알아보는 사람들도 상당수 있으리라 생각됩니다.
(x=0일 땐 y=0이고요.) 아시겠지만 y' = 2x sin (1/x) - cos (1/x) 인데요, 이는x=0 아닐 때에만 참입니다. (미분의 정의에 입각하여 계산한 것이, 곧 합성함수 미분 공식 이용해서 미분한 것과 동일.)
단, x=0이라면, y' = lim_{h->0} ( h^2 sin (1/h) - 0 ) / h = lim_{h->0} h sin (1/h) = 0 (샌드위치 정리) 입니다.
x^2 sin (1/x)를 미분해서 x=0을 넣었는데 안 맞는다는 표현 자체가 어불성설입니다. 미분해서 x=0을 대입한 것이 제가 바로 윗줄에서 한 것이고, 그렇게 하면 도함수값이 0 이 나오고요. 님이 하신 것은, x=0이 아닐 때에 한해서 유효한 도함수의 식에다가 x=0을 대입하려 한 것입니다. 만약 도함수가 연속이라면 님처럼 해도 참이겠지만 이 경우에는 도함수가 x=0에서 연속이 아니라서 그 방식이 성립하지 않게 되는 것이고요. 위에 댓글 단 분들과 같은 설명인데 풀어서 써보았습니다.