미분고수만 헬프
게시글 주소: https://orbi.kr/0003474787
f(x)는 x=0 일때는 0 그외에는 x2sinx-1
일때 x=0 에서 미분가능성을 조사해라
이런 문제인데요 사실 극한값계산하면 미분가능하다는건 알겠는데요 실제로
x2sinx-1 이 함수를 미분해서 x=0 떄려넣으면 값이 안나와요 왜이러져
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅅㅂㅋㅋㅋㅋ
-
연고대가 딱히 아깝게 떨어지는 점수가 아니어도 미련 많이남나요? 지금은 괜찮은데...
-
산책 ㅇㅈ 4
첫 번째 턴 구간 도착
-
라인좀요 0
언미물지 41131 어디가야 함 ㅠㅠ
-
3 안뜨면 진짜 오열할듯 1년내내 4는 에바잖아...
-
[고려대 합격자를 위한 꿀팁][고려대 25학번 오픈채팅방]_ 필수 선택해야하는 제2전공 제도 0
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
틀.닥 되는거 한순간이군아...
-
남자만
-
어뜨캄뇨
-
누구 탈릅 했다 4
누구지..?
-
집에 있으면 피폐해짐
-
올해 수능 물리 난이도가 쉬웠음? 난 아무리 생각해도 아니던데 피오르 메인글에서...
-
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다....
-
..
-
이 박은 성적으로 대학을간다고? 여긴 못다니겠다 싶음 ㅇㅇ 그래서 현역 재수때...
-
ㅣ치대가 진짜 가고 싶은데 1학년 1학기 1.8이고 2학기는 1.5~7 나올거 같고...
-
허허허 인생에서 헌혈 처음해봤다...
-
노베이스 과외 2
노베이스고 과외 구할려고 하는데 과외를 어디서 구하면 좋을까요? 문과입니다.
-
난 어디 뷔페나 양식집도 혼밥 막하는데
-
1시쯤 찍은건데 배그 출구에서 나오니 거기 계셔서 좀 놀랐음 ㅋㅋ
-
움직도르래 열수철 단진동 모든 게 준비 되었다 가자 물리1의 정상화
-
ㄹㅇ 조바심나네 걍 빨리 입시 끝났으면
-
넵
-
현역이 정시 13
서성 경영이랑 중대 경영 쓰려는데 너무 욕심인걸까요...?
-
궁금한거물어보십쇼 답변해드림 예시) 족보구해야하는데 아는선배 없으면 어케하나요
-
ㅁㅌㅊ?
-
학원에서 고등수학 상하 잠시 가르칠 것 같습니다. 제가 6,9평 미적 백분위...
-
되면 어디가시나요 다들
-
그래서 그대는 2
내 아름다운 사람아~
-
수학 : 현우진 국어 : 문학 : 김상훈 선택 : 화작(고민중) 비문학 : 강민철...
-
1557 4
적분이 문제에요 이 와중에 진짜 예 Ln? 안쪽 그래도 범위쪼개는?게 문제에요...
-
안뇽하세여 0
동생이 이번에 입시봐서 오랜만에 자료뒤져보는 아죠씨에여 혹시 FAIT은 이제...
-
고2때 엄마한테 공부한다고 돈 받은 다음 독서실 1인석 끊어놓고 이거 무자막으로 정주행했음
-
시대 목동 2
님들 이거면 시대 목동 낮반임? 장학 30도 못 받나
-
[오직 나만이, 이 세계의 결말을 알고 있다.] 무려 게시물 1,422,072개에...
-
평가원 #~#
-
여기에 정치태그를 붙여버리네
-
가천대 D형 9
다들 어땠음 나 수학 좀 꼬였는데ㅠㅠ
-
거울방학에 미적은 강기원t 듣고 공통은 프로메테우스/스타팅블록(인강)/심화특강 중에...
-
함께하는 그사람이 그대에게 잘해주나요
-
25뉴런 먼저 하고 26뉴런까지 해서 4월정도까지 끝내는거 어떻게 생각하시나요?
-
이번호 맥심은 표지모델(?) 때문에라도 사 봐야 할 것 같네요.진짜 이 컷은 다시봐도...
-
왜 다른 사람을 goat라 하는지 이해 안됨
-
선택과목 추천좀 2
생1 좆망했는데 재수할때 생1 할까요 사문할까요 생2할까요 사실 생1 공부 한게...
-
얜 물스퍼거가 1-2등급을 꽉 잡고있어서 무재능은 해도 안오름 ㅋㅋ
-
학교도 말해야 하는 것 같던데 지방에 있는 학교여도 불이익 같은건 없겠죠??
-
옷 늘어진다고 말하고 헤어졌어요
-
ㅠㅠ..
-
옯스타? 2
이건 또 뭐임?
미가능성
우미분 좌미분 함수값비교ㄱㄱ
글고 미가능조건없으면아랫분말처럼
함부로미분햇을때 에러발생
도함수의그래프가 연속이라는보장없지않나요
x2sinx가 2xsinx인가요?? 함수가 2xsinx-1이면 x=0일때 불연속인데 미분 불가;;
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"고
설명되어 있는 교과서나 정석 같은 개념서들이 많고,
또한 실제로 그렇게 풀어서 100 중에 99는 이상이 없는데,
위와 같이, 도함수가 불.연.속.인 지점에서도
마찬가지의 논리로 접근하려고 해서 그렇습니다.
특정 점에서 미분이 가능하다는 말은,
1. 그 점에서 연속이고,
2. 좌우미분계수가 같다는 말이지,
도함수 차원에서 좌극한과 도함수의 우극한이 같되,
거기다 도함숫값까지 같아란 얘기는 아니니까요..
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"는 맞는 이야기지요. (존재한다면 대입하면 되고, 존재 안 하면 대입해봐야 소용 없고요.)
아마,
도함수 f'(x)가 연속인 경우(단, x=a에서는 연속인지 모르고..)에 f'(a)를 구하는 방법으로,
"(다른 점에서 성립하는) 도함수식 구해서 x -> a 로의 극한을 구하면 된다"라고 설명하는 개념서가 있는데 이는 엄밀하게는 틀린 설명이다..
라는 말씀을 하시려는 것이지요?
이거 0에서 미분이 가능해서 미분계수가 존재하고
f(x)가 0에서 당연히 연속이지만
f'(x)는 0에서 연속이 아닌 예인데
연속확장가능한함수 라고 하네요..구글링하시길
저렇게 한 점에서의 값만 따로 준 경우에만 이런일이
생기는듯
아 그리고 y= f(x) 그래프 그려보세요
Y축에 가까워질수록 진동하면서
0에 수렴하는 기함수입니다
x=a에서 미분계수의 정의
lim(h→0){f(a+h)-f(a)}/h
극한값이 존재하면 미분가능하다고 합니다
위엣분들이 좋은 말씀 해주셨는데 구체적 계산이 없어서 조금 더 첨언하겠습니다.
먼저 x=0아닐 때 y= x^2 sin (1/x) 라는 함수를 말씀하시는 것 같은데 작성자님처럼 표기하시면 못 알아보는 사람들도 상당수 있으리라 생각됩니다.
(x=0일 땐 y=0이고요.) 아시겠지만 y' = 2x sin (1/x) - cos (1/x) 인데요, 이는x=0 아닐 때에만 참입니다. (미분의 정의에 입각하여 계산한 것이, 곧 합성함수 미분 공식 이용해서 미분한 것과 동일.)
단, x=0이라면, y' = lim_{h->0} ( h^2 sin (1/h) - 0 ) / h = lim_{h->0} h sin (1/h) = 0 (샌드위치 정리) 입니다.
x^2 sin (1/x)를 미분해서 x=0을 넣었는데 안 맞는다는 표현 자체가 어불성설입니다. 미분해서 x=0을 대입한 것이 제가 바로 윗줄에서 한 것이고, 그렇게 하면 도함수값이 0 이 나오고요. 님이 하신 것은, x=0이 아닐 때에 한해서 유효한 도함수의 식에다가 x=0을 대입하려 한 것입니다. 만약 도함수가 연속이라면 님처럼 해도 참이겠지만 이 경우에는 도함수가 x=0에서 연속이 아니라서 그 방식이 성립하지 않게 되는 것이고요. 위에 댓글 단 분들과 같은 설명인데 풀어서 써보았습니다.