-
한자외우기 개빡세보임ㅋㅋㅋ
-
원피스 사람들은 1
뭘 먹길래 키가 저렇게 큼 샹크스가 200인데 작아보임
-
ㅇㄴㅎㅈㅁㅅㅇ 1
ㅈㄱㄴ
-
아님 미역국에 밥말아먹을지 고민중임 배가 너무 출출해
-
흫 4
기분좋아
-
우웅우 4
우웅
-
bxtre.kr/
-
사실 시작한건아니구요 내일부터 하려구요 잘부탁드려요 히히
-
예비의주빈 취침 5
설레서 잠이안오네
-
빨리 돈 벌고 싶어요 11
개강 이래 한 달 동안 식비로 40, 기숙사 들어온 첫 달이라 세제 밀대 행거 샴푸...
-
bxtre.kr/
-
ㄱㄱ혓
-
진심이다...
-
원피스는 못 참지 ㅋㅋ
-
현역 이번 3모 성적입니다. 언매 89 미적 81 영어 96 사문 47 생명 45...
-
돈달라고? 으이구
-
아 쪽팔려 6
과대해석 해버려서 갑분싸 됐음
-
의미없는 일상을 나열중
-
역류성 식도염 걸릴 확률이 높아지는게 느껴져요
-
bxtre.kr/
-
쉽지 않음
-
살기싫다 8
안녕들하신가요
-
섹완 ㅋㅋㅋㅋㅋ 4
확실한건 어제 시킨 개창렬 1인피자보다 포만감이 더 느껴진다는거임...
-
짝남이 머리쓰담쓰담해줘서 기분좋았음 히히
-
N수생 1
용돈
-
ㅇㅈ 17
똑같은위치에서 봇치따라하기
-
인문1등인데걍자연계애들한테상대가안되네….. 과탐했으면진짜큰일났을듯 그리고 현역들...
-
수능준비한다는 티가 나지도 않으면서 적당히 재밌고(나는 재밌었음) 수능범위에서...
-
배가 출출하다 2
대충 간단하게 뭐 먹어야지
-
잘자요 2
-
저렇게 뛰는 서울대생 봄 뭐죠… 몸이 여러갠가
-
곧 29렙이네 8
아이고
-
지브리 어케하는거냐
-
지브리 해봤는데 2
이건 뭔 딴 사람을 만들어놨네 ㅋㅋㅋ
-
다음주에 카투사 입대합니다.. 군수 할 예정이긴한데 훈련소까지 문제집 들고가는건 좀...
-
이거 푸시는분 만덕드림 10
본인이 푼 풀이 올리셔야함
-
님들 삼투압이 0
농도차에 비례 OR 농도에 비례 뭐가 맞는거임? 생2 수특에는 1인데 백호가 2라했던거같아서요
-
본인 소신발언 사문 개념 윤성훈이 임정환보다 압도적으로좋은듯 3
기갈상 풀때도 윤성훈 작년 방식으로 A기? 이렇게 풀고잇고 무엇보다 임정환은...
-
bxtre.kr/
-
자러갈게요 5
책좀읽다가 자려구요 빠이
-
가사 좀 어려운데 내일이나 모레 번역 시도해볼까 너무 따끈따끈해서 아직 없을텐디
-
ㅃ이이이이까리 4
으행9
-
나 오ㅑ 이렇게 20
사납게 생겻냐… 고딩 때는 더 동글동글했렀는데 이러니 여자가 없지 ;;
-
아가 자야지 6
네
-
지인선엔제 3
미적분도 나오면 좋겠다
-
미적분빡공하기 1
내신의 순기능 근데 내 수준: 수특 레벨2 간신히 푸는 수준 이긴해 ㅋㅋㅋ...
-
수학개존나잘하고싶다 11
열받아서 자러감
-
모자에 쌩얼이었는데 그 분이 내 자리 의자 치고 가서 죄송합니다 하는데 눈...
몫이 같은 인수?가 있으면 되는거 같은대 잘 모르겠어서 ㅜㅜ
정수론에서의 문제인지 다항식에서의 문제인지 알려주세요
다항식에서요! 정수론에선 또 다른건가요?
그냥 다르다기보다는 설명하는방법에 차이가 있으니까요 ㅋㅋㅋㅋ;;
다항식의 경우 두가지로 생각할수 있는데
10가에서 배웠던 지식인 나머지정리를 이용하면(지금은 수-상이었나....)
f(x)와 g(x)가 h(x)로 나눈 나머지가 같다고 보면
f(x) = h(x)Q(x) + R(x)
g(x) = h(x)Q'(x) + R(x) 로 두고 나머지정리법을 이용하여 h(x)=0을 만족하는 값을넣어서 푸는것과
두 다항식의 차가 몫을 인수로 가지게 되면 되겠네요
어차피 두 방법이 다 같은 맥락이니까(위의 두식의 차) 실질적으로 한가지네요.. ㅠ
Fx를 gx로 나눈 나머지 R
Fx를 hx로 나눈 나머지 k
Fx를 gxhx로 나눈 나머지 y라고 할때
R=y
K=y 성립하는건가요?
그런대 y=a g(x)+R이건 어떻게 알수 있는건가요 ㅠㅠ
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
아 어제 새벽 세시부터 이거 하고있는데 너무 어렵네요 답변 감사드립니다
이해를 못하면 답답하고 열받아서 이해할때까지 쓸대 없이 집착하게 되네요 ㅠㅠ찾아 보니까"피제수 제수 원리 어쩌고 뭐 이해를 잘 못하겠더라구요"
"Gx로 나누어 떨어지면 y를 gx로 나눈 나머지를 알수 있는 이부분을 잘 이해를 못하겟어요 ㅠㅠ" 숫자로는 24를 5로 나누면5 4+4 .,,,15로 나누면 15 1+14
다시 14를 5로 나누면 4이런거 같은대 나머지를 원래 꺼로 나누면 나머지가 같아지는 이유를 모르겠어요 신기한대도 ㅠㅠ
나머지는 gx의 배수가 아니고 gxhx보다 작다 >이거 가지고 gx로 나눈 나머지와 같다를 알아야하는거 같은데 잘 이해가 ㅠㅠ