한완수 수2상편 질문드립니다
게시글 주소: https://orbi.kr/0003349739

헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10 9 8
-
화학러 고민 1
처음엔 고석용 선생님 강의로 쭉 갈 생각이었는데, 김준 선생님이 압도적이라는 얘기가...
-
난이도 둘중하나로나오면 머고를거임?
-
설대 필수 시절에는 투 하나만 꼈는데 이제 투하는 애들은 거의 두개씩 끼는게 변수임...
-
내가 맨날 배달 음식 시켜주고 심부름도 해주는데 왜 ㅈㄴ 까칠할까 나랑 13살 차이나는데
-
ㅅㄱ요
-
나이키 콘돔?에 justdoit 잇엏음 ㅋㅋㅋ
-
참고로 본인은 1년정지먹어서 글 못씀
-
ㅜㅠㅠㅠㅠㅠㅠ
-
시립대 0
추가모집 자연 949.80 이면 붙을까요??
-
이 신발 어때요 8
1,2,3번 다 이쁨?☃️
-
필기감도 좋고 울트라라서 화면 넓직한 것도 좋은데 그 펜슬 자체가 진짜 확실히 좀...
-
한양대 목표 재수생인데 내신 2.1이면 ㄱㅊ은거임?ㅜㅜㅜ… 수시러엿다가 6광탈하고...
-
비록 오르비에서 자주 보진 못해도 가끔 와서 소식이라도 전해주면 진심으로 응원하게...
-
22수능 대비 교재로 23 24 25 26수능 돌려막기
-
아빠가 수능 준비할때 이런 조건을 내거셨음 "수능 끝나고 대학 가면 자취시켜줄게"...
-
진짜눈만ㅇㅈ 26
다른사진올리면특정당할거거ㅏㅌ음 ㅎ
-
1. 트밀 끝나고 바로 러쉬 들어가나요? 2. 단과 라이브 기준 작년 내신 휴강 없었나요?
-
걍 살아야지
-
대성 새로 오신 것 같은데 어느정도 입지가 있는 것 같아서요 강대에서 유명한 분이셨나요?!
-
목동 시대인재 재종 정규반 개강했나요? 그리고 수업이랑 컨텐츠 말고 인강이랑 병행...
-
ㅅ. ㅍ
-
공부하러 감 1
-
끔찍한 상상 해버렸는데 12
양손에 스시모듬 들고 서빙하다가 혹시라도 실수해서 넘어져버리면 개닦이고 3만원...
-
대학생입장에서 피자한판 치킨 한마리 다 먹을 수 있는게 넘 커요
-
수학 - 김범준 + a (아마 쫑느 라이브 중간합류할듯) 국어 - 정석민 사문 -...
-
레버 그만해야지 3
교훈을 배웠으니 본주만 담을게
-
근데 왜 뽀삐가 딜 1등이냐?
-
표본 꼬라지 ㅅㅂ
-
차영진 수1 팔로워,기무적 다듣고 뭐하는게 좋을까요? 12월달부터 해서 수1수2...
-
물론 본인은 저능해서 1년박고도 사문 만점 못받음
-
아니 다 상대평가 잖아 똑같이 4퍼인데 기준이 뭔지 잘 모르겠네 쉬우면 다 쉬운거 아녀요?
-
미적 1
작수 확통4등급인데 수학3만 떠도 되는데 미적해도 될까여
-
편법 x 수능성적표 인증하심 됩니다~
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
어떤 분위기인가요? 그냥 3/4부터 바로 등교 안한다는 분위긴가요? 안갈거면...
-
앞으로 3시간 30분
-
기하 vs 확통 3
공대 가려는데 작수131415 202122 못풀었고 백분위50인데 기하하면 다른과목...
-
친구들 다 군대가서 휴가 나오면 쓸쓸하구먼..
-
도저히 못 먹겠는데...먹다가 느끼해서 절반만 먹고 신라면 레드로 입가심 중임..
-
생지 하다가 생명 사문으로 런했는데.. 사문 한번도 안해봐서용
-
저녁 치킨ㅇㅈ 7
양념은 역시 페리카나
-
선착1 5
탈릅기념 덕코 증정
-
https://orbi.kr/00072135873 몇 명 더 와줘 재밌당
-
고3이고 수학 빼고 노베 상태에서 정시 준비중입니다 미적 선택이고 수분감 하고있어요...
-
나이 많아서 울어써
-
오르비 활동안한게 존다 다행이었노... 나같은 Wls은 헤어나올수가없다....
-
토플 도와주세요 0
저 지난해 토플 리딩 27, 리스닝 29인데 명색이 유학파라는 놈이 머리에 펑크...
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.