수능 수학 만점을 위한 자작문제 1번(수정판)
게시글 주소: https://orbi.kr/0003229982
수능 수학 만점을 위한 자작문제 1번은
만점자 1%의 수능문제 정도의 수준과 형태로
평가원 기출과 교과서를 바탕으로 출제됩니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개억까당함 0
하따 잡은줄.. 숏이나 칠걸그냥 아ㅏㅏㅏ
-
얼버기 3
모닝
-
D-258 0
다음주부터 독재 가니깐 스카 가는 마지막날.
-
오늘 할일 2
10모 기하 풀기 이게 전국 만점 한명이라매요? ㅋㅋ
-
지라이야랑 이타치랑 싸우면 누구 이기는거임 대체
-
아침이라 머리 아프다고 넘기겠지? 오후까지 존버 타야겠다
-
탄핵되고 ㅁㅈ당에서 대통령나오면 의대 감원되나요?
-
하루 동안 물리학2 1단원 정도만 풀었습니다
-
덕코복권에 다 꼴아박음..... 아 이제 편의점에서 덕코로 점심 못 사먹겠네
-
국어 수학 못할수록 사탐런의 효용이 크죠?
-
아침은 0
롤체 5인큐
-
문학급으로 연계체감 되나요?
-
선택과목 고민 1
언매 기하 지1 물2 설의 가는데 선태과목 불이익은 없겠죠? 선택과목 심리싸움만...
-
일단 전 물1지1이었고 이제 군필 5수가 되어가는 사람입니다. 지1은 계속...
-
ㄷㄷ
-
얼버기 3
사실 밤샘
-
32분 전인 가능세계가…;;;
-
재수생인데 주변 친구들 반절은 독재가고 잘하는 애들은 다 시대 재종갔는데 저는 너무...
-
푸는데 ㅈㄴ 오래걸림 ㅋㅋ
-
제 보잘것 없는 수험생활의 정수를 담았습니다 아마도 근데 칼럼을 다 쓰고도 기다려야...
-
예전엔 이렇지 않았던것 같은데.....
-
인생 최악의 악몽 꿧다 11
(내용 주의) (순수하고 마음이여리고 차칸 오르비언이면 읽지말것) 1. 폐쇄된...
-
자기야 6
잘자
-
오늘 할 일 1
여드름 흉터 연고 사기 주민센터가서 모바일 민증 받기 머리자르기
-
뭔가 정리가 안되는 느낌 자체교재라도 만들어볼까
-
힘내라 샤미코
-
기차지나간당 4
부지런행
-
작수2임..
-
1. 수학 실모 풀기 2. 프랙탈 만들기... (?)
-
다 자나 3
웬일로 알림창 마지막 알림이 2시간전이지
-
흑백 료 등장 3
-
원래 유튜브 계정은 너무 많은 관심사들이 섞여나와서 생산성 있는 채널들만 따로...
-
새벽에두시간동안칼럼을쓰고있는가
-
서연카성울?? 서연성카울??
-
센츄리온 질문 6
고2 학평도 센츄리온 신청 가능한가요? 만약 된다면 이 성적으로도 되는지…
-
ㅋㅋ 갇혓다 1
흐에
-
당황했네 ㄷㄷ
-
수바는 맛있다 0
방금 풀고왔는데, 확실히 실모는 실모다. 다른 N제와는 맛이 다르다. 실모내놔
-
그냥어떻게봐도존나부정적으로밖에안보여 근데그런인생이라납득은가 개좆같은일만일어나는데뭐죽으라는거지
-
그건 바로 '나' 살기 싫음 ㅇㅇ 진심
-
학원묵시록 0
재밋나요
-
이랴!!
-
걍 사탐할까 5
나도 사탐런으로 꿀빨고 여초과 가고 싶다ㅅㅂ
-
못참겠대 0
아:: ㄸㅂ
-
반수 관련 질문 6
2025 수능 백분위 화작 확통 생윤 사문기준으로 99(1) 70(4) 2...
-
여기저기 잘쓰고잇음
-
계속 생각난다 너무 맛있는데
-
치킨 맛있다 9
다 먹었으니 나 놀아줄사람
문제가 올라와있군요ㅎㅎ
15. 231425153
16. 351414235
(가운데 번호)
출제자의 의도를 파악하지 못 했는지, 두 문항 사이 연계성은 다소 약한 것 같은데..
15. f의 0에서의 우극한 = f의 0에서의 좌극한 = g의 0에서의 우극한 = a_1 + ... + a_n
비슷하게 f의 2에서의 좌극한 = 8 - 1/(n+1)
1에서 연속이므로, a_1 + ... _ a_n = n/(n+1) (여기서 a_n의 극한이 0임을 알 수 있다.)
따라서 주어진 식 = lim 2(a_1 + ... + a_n ) - a_n+1 + 8 - 1/(n+1) = lim 2n/(n+1) - a_n+1 + 8 - 1/(n+1) = 2 - 0 + 8 - 0
16. 조건 다에서 적분(2~4) X^2 f ''(X) dX = 1 (x=X+4 치환). 부분적분하면
1=적분(2~4) X^2 f ''(X) dX = [x^2 f'(x)](2에서 4까지) - 2적분(2~4) xf'(x) dx
한편 구하고자 하는 적분은,
A=적분(-2~0) x^2 g''(x) dx = [x^2 g'(x)](-2에서 0까지) - 2적분(-2~0) xg'(x) dx
두 식을 변변 빼면 우측의 마지막 항은 상쇄( 조건 나로부터.. 조건 가에서 f가 주기함수임도 사용)
1-A = 16f ' (4) - 4f ' (2) + 4g' (-2) = 16 f ' (4) (조건 가로부터 f ' (2) = f ' (-2) = g ' (-2)임을 이용(g가 미분가능하므로))
그러므로 A = 1-16 . (f ' (4) = g ' (0) = 1 이므로.. g가 두 번 미분 가능하다는 사실로부터)