[이동훈t] 9모 가형 20번 근사적 풀이
게시글 주소: https://orbi.kr/00032279793
안녕하세요.
이동훈 기출
수능 수학독본의
이동훈 입니다.
9모 가형 20번의
그래프의 개형을 이용한
근사적인 풀이에
대한 문의들이 있어서
해설지 작업이
아직 다 끝나지 않았지만
일단 올려봅니다.
y축에 대한
정적분/구분구적법이
아니냐 ...
라고 말하면 할 말 없긴 한데.
이과생이라면
이 정도는
납득 가능한 수준이라고
생각합니다.
그리고 합성함수의 그래프의 개형을
잘 ~
그리면
위와 같은 엄밀한 계산까지
할 필요도 없겠지요.
이번 주안에 해설지 업로드 하겠습니다.
감사합니다 ~~ :)
ㄱㄹ
2ㅁ
.
.
.
가형 20번의 분석이 마음에 들었다면 ~
2021 이동훈 기출문제집 오르비 atom 책 페이지 (아래)
2021 수능 수학독본 수학2 (전자책)
docs.orbi.kr/docs/7636" target="_blank">docs.orbi.kr/docs/7636" target="_blank">docs.orbi.kr/docs/7636" target="_blank">docs.orbi.kr/docs/7636" target="_blank">https://docs.orbi.kr/docs/7636
2021 수능 수학독본 미적분 (전자책)
docs.orbi.kr/docs/7637" target="_blank">docs.orbi.kr/docs/7637" target="_blank">docs.orbi.kr/docs/7637" target="_blank">docs.orbi.kr/docs/7637" target="_blank">https://docs.orbi.kr/docs/7637
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스토아
-
채권의 수익률 - 수특 독서 적용편 사회·문화 01 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오르비에서...
-
근데 그 짝이 좋은사람이라곤 안햇슴
-
진짜 너무너무 무섭다
-
에피메테우스 얘가 사감
-
학고반수 자극제로 써야..
-
25수능 과탐 생1지1로 4,1 뜨고 삼반수 예정입니다 지1는 유지하되 생1...
-
6번만 더 하면 전역
-
날이제 공간벡터라고 불러주셈
-
아무리 6시 40분이라지만 조용하구만
-
새르비 뭔일있었던거야
-
아으...
-
ㅈㄱㄴ
-
얼버기.. 12
사실 스카 가는 중
-
오르비 확실히 사람 많이 줄음
-
다들 새내기랑 노네 슬프다
-
깨달음 2
ㅇㅇ
-
지렸다 걍
-
기차지나간당 16
부지런행
-
ㅇㅇ? 멍텅이였나 자꾸 똥발사하는놈 있었는데.
-
유튜브 알고리즘에 상명대 기사뜨길레 봤는데 버스 미끄러짐 사고가 자주 일어난다는건 뭐냐 ㅅㅂㅋㅋㅋ
-
ㅠ
-
던손실
-
삼켜야 하는것들이 더 많은거 같아는 핑계야 너가 나에게 줄 아픔보다는 내가 가진 사랑이 더 클거야
-
캣츠아이폼미쳣네 0
윤채누나 터치터치터치터치터치
-
메인 질문 글 보다가 갑자기 생각난건데,Evan chen (굉장한 고수..)이...
-
서울사람들아 1
지하철 환승하는데 몇분걸려요? 그리고 오는 간격이 어느정도 되나요 놓치면 ㅈ댐??
-
생각정리 끝 1
다시 펜 잡아야겠음
-
ㅈㄱㄴ
-
술너무 3
많이 먹었어 으아 매화수 개전맛
-
국수하고 2
영어하고 과탐하고
-
방에서 전담 피다가 걸리면 가습기인 척 해야지
-
메디컬은 추합 인증 올리는 순간 바로 옯밍아웃이네요 3
그날 단톡방 들어온 사람으로 바로 특정 가능할듯 ㅋㅋㅋㅋ
-
아가 귀가 중 1
건입에서 택시탐
-
2025학년도 경찰대 영어 1차 시험 기출문제 18번 문장별 분석 1
2025학년도 경찰대 영어 1차 시험 기출문제 18번 해설 ( 선명하게 출력해서...
-
졸려라 2
자야징
-
어떤걸 배우는 학과인가요? 코딩 많이 하나요..? 취업은 보통 어디로 하는편인가요?
-
참 고마운 커뮤니티야
-
어떻게 선택해야할까요? 두 과의 차이점이 뭔가요? 어떤 과가 더 적성에 맞는지 모르겠어요…
-
롤할래? 1
ㅎ
-
오르비 잘 자! 8
좋은 꿈 꾸기
-
아까 그게 타격이 너무 컸다
-
야식 ㅇㅈ 4
지금 올리면 아무도 안보겠지? ㅜㅜ
-
행복하세요 3
행복하기
-
막 울퉁불퉁 정도는 아닌데 가슴이랑 등 엉덩이 하체같은 대근육이 큼 빵이...
-
넵
-
잘자요 8
저는 이만 자러가볼께요 행복한 꿈을 꾸며 오늘은 그래도 괜찮았던거 같아요...
-
시간 버그인가
-
살아있는 사람 손
-
경기력 ㅈ망인데 상대가 더 못해서 이기니까 이겨도 기분이 썩 좋진 않네
![](https://s3.orbi.kr/data/emoticons/rabong/004.png)
오....커지는건가..![](https://s3.orbi.kr/data/emoticons/rabong/016.png)
그렇지 않습니다. VIEW 의 차이입니다. :)그렇습니다 ! 위의 그림에서는 직사각형을 그리지 않았지만, 각 쪼개진 선분을 밑면으로 하는 직사각형을 여러개 그려서 구분구적법으로 정적분의 값을 생각해본다면, 넓이가 점점 커지는 것을 관찰할 수 있습니다. 그리고 위와 같이 수식을 이용한 풀이 역시 짧고 간단합니다. 따라서 이 문제는 그래프의 개형을 이용한 근사적인 풀이까지도 열어두었다고 봐야 하겠습니다. :)
안녕하세요 선생님. 만약 sin(pi+sqrt(p))=sinsqrt(p)가 맞는지만 클리어가 되면 너무 멋진 풀이가 될 것 같습니다.
제가 지금 12시간동안 수학만 보고 있어서 뇌가 굳었는지, 이 부분이 맞는지 잘 모르겠습니다.
만약 sin(pi+sqrt(p))=sinsqrt(p)가 아닌 sin(pi-sqrt(p))=sinsqrt(p) 가 맞다면, 아마 부등식이 반대로 나와 보여지지 않는 것 같습니다.
가르침을 주세요 ㅎㅎ 좋은 관점 하나 배워갑니다 ^_^
(물론, y축 적분을 불편해하는 불편러들이 있겠지만, 수학적으론 매우 타당하니까요)
밥먹다가 문득 생각났습니다. 아마 간단한 오타 수준이었던 것 같아요. (메이비 부호실수)
잘 고치셔서 올려주실거라 생각합니다 ㅎㅎ 그 풀이는, 맞는 풀이가 될 거구요.
내일 쯤 제 글 상단에 선생님의 풀이를 같이 첨부하여 '이렇게 하면 개형풀이도 옳다.'라고 보여주고 싶어요!
저도 선생님같이 정확한 해설만 있는 기출서를 한번 써보고 싶은데, 언제가 될지..ㅎㅎ 리스펙합니다~
제가 처음에 올린 수식에 오타가 있어서 정정하였습니다. :)
사실 위와 같은 발상, 풀이는 대부분의 수험생이 시험 시간 안에 할 수 있을 것 같지 않습니다. 대부분의 수험생분들은 그래프의 개형 그리고 ... 왠지 이렇게 하면 답일 것 같은데. 이 정도에서 답을 구할 것이구요.(시간이 남는다면 계산으로 확인을 하는게 현실적이겠지요.) 더더욱 5지선다 이기도 하고, 수열의 규칙성이 짝홀에서 뭔가 벗어날 것 같지 않기도 해서 ... 1번을 답으로 할 가능성이 높겠지요. 출제자 입장에서도 그 이상 뭔가 더 꼬거나 함정을 팔것 같지는 않구요. 물론 수능에서 이걸 노리고 출제할 가능성이 없는건 또 아닙니다. 그런 식으로 난이도 높이는 시험이니까요. 그래서 위의 문제는 어디까지나 계산을 이용한 풀이가 첫 번째 풀이일 것입니다. 위의 풀이는 위험 부담은 있지만 시간 확보를 위한 것이구요.
댓글 감사드립니다 ~~ :)
네, 저도 같은 입장입니다.
학생이라면 둘 다 어느정도 허용한다. 약간의 확률을 믿는거지만, 다수의 직관이라면 어차피 틀려도 같이 틀리고, 1컷은 똑같이 움직일테니 상대적 손해는 없을거구요.
하지만 가르치는 입장에선 직관과 더불어 정확한 해법도 제시해야하잖아요~
아마 이동훈 선생님도 위와 같은 증거(?)가 없었다면, 단순한 직관 정도로만 소개/제시하고 넘어갔을거라 감히 궁예질을 해봅니다 ㅎㅎ 감사합니다.
모든 강사분들의 고민인것 같습니다. 직관에 의한 풀이, 엄밀한 풀이, 그림에 의한 풀이, 수식에 의한 풀이, ... 수험생마다 원하는 것이 다 다르기 때문에 학파 같은 것이 생기기도 하구요. 수능 난문의 경우에는 직관적으로 답을 미리 결정하고, 이를 어느 깊이까지 증명할 것인지가 항상 고민이 됩니다. 선생, 학생 모두 그러할 것입니다. 감사합니다 ! :)
역시나 같은 고민을..ㅎㅎㅎ '직관이 우선이며 진리다.' 라고 믿고 있는 학생들이 꽤 높은 비율로 있는 것 같은데.. 그렇게 같은 패턴으로 무너졌던 직관력 좋았던 고3 학생 출신으로써 정말 비추하고 싶네요ㅎㅎ 직관은 최선이 아니고 차선임을 꼭 알아줬음 좋겠어요.
좋은 저녁 되세요~
시험에는 조금이라도 의심스러우면 논리적으로 증명하는 것이 답이겠지요.
좋은 밤 되시길 ~ :)
합성함수를 잘 그리는 건 구체적으로 어떻게 그리는 건가영
합성함수 역시 함수이지요. (합성)함수의 그래프의 개형을 그릴 때에는
곡선이 지나는 점 (특히 항상 지나는 점)
어떤 점에서의 접선의 기울기로 오목볼록의 판단
이 두 가지만 잘 고려해도 예쁘고 정확하게 그래프의 개형을 그릴 수 있습니다. 이 문제의 경우에도 함수 f(x)의 그래프의 개형을 그냥 쫙쫙 긋는 것보다는 ... 점과 기울기, 볼록성을 판단하면 깔끔하게 그려집니다. 감사합니다 ~~~ :)
혹시 2022버전 가형 교사경은 언제쯤 나올까요?
3학년 학평이 끝나는 직후 (11월)이 될 수도 있고, 2학년 학평이 끝나는 직후 (12월)일 될 수도 있습니다. 아직은 고민중입니다. 늦어도 12월 내에는 출시됩니다. :)
2021 가형 이동훈 교사경 문제집이랑 2022가형 이동훈 기출 문제집이랑 문항 선별,배치 및 해설 등의 부분에서 큰 차이가 있을까요?
(2022 교사경 대신 2021을 구매해서 풀어도 될까요?)
2022 에는 2021 에 비해서 추가문항이 적지 않을 것이므로 가능하면 2022 버전으로 푸는 것이 나을 것입니다.(2022 수능을 대비한다면 말이죠.) 해설은 큰 차이는 없을 것이고, 문항 선별은 좀 달라지고, 배치도 달라질 가능성이 있습니다. 다만 2021 버전을 풀고, 여기에 올해 교사경 기출을 시험지로 풀고 하면 괜찮긴 합니다. 감사합니다 ~~ :)