수리 가 정답 (그리고 약간의 해설)
게시글 주소: https://orbi.kr/0003166188
인지는 모르지만 혹시 필요하실까봐 올립니다. 홀수형.
1번부터 차례대로
4 2 3 2 2 1 1 5 5 3
1 4 4 3 5 3 4 1 5 2
5
14 28 36 51 7 23 40 16 573
틀린 것 있으면 알려주세요. 워낙 급히 풀어서 틀린 게 있을지도 모릅니다. 수험생 여러분들 모두 고생하셨을텐데 푹 쉬시고 마음껏 즐기시길 바랍니다!
(필요하신 분을 위해) 해설에 대해 간단히 멘트를 달면
15번. 그래프를 보고, g(0)=g(1)=g(-1)을 파악하는 게 중요. g(x)-3 이라는 3차식이 x=0,1,-1 세 실근을 갖는 셈이므로, g(x)= x(x-1)(x+1)+3
16번. 첫번째 식에서 좌측에 A의 역행렬 곱한 후, 우측에 A곱해서 AB=BA를 얻는 것이 중요해 보입니다.
19번. f(0)>0이고, 세 실근이 모두 양수임을 파악. 따라서 f는 최고차항 음수. g(x)는 w자형을 거꾸로 해놓은 모양.
20번. 무게중심(1,1,3) 지나면서 ABC있는 면에 수직인 직선 -> (x-1)/2 = (y-1)/-1 = (z-3)/1. 평면x+y+z=3과 연립하여 D좌표 구하면 (-1,2,2). 높이가 루트6. 한 변의 길이가 a라 하면 높이 (루트6 /3)a = 루트6. a=3
21번. 미분하여 그래프 개형 파악. y=f(x)의 그래프와 y=|x|의 그래프 중 최솟값을 대응시키는 함수가 바로 g(x). 즉, g(x)=min{f(x),|x|}.
x=0에서 x축에 접하고, 음수로 갈때 무한대로 발산하므로, g(x)는 x<0에서 불가피하게 미분불능점 1개 이미 생김. x>0에서는 g(x)는 미분불능점 없어야 함. --> x>0에서는 항상 y=x 아래에 있어야 함. 따라서 x>0에서 f(x)/x 의 최댓값이 1(y=x의 기울기)이 되게 하는 k를 구하는 문제.
26번. |벡터PA 내적 벡터PB| = PA길이 곱 PH길이 = xy<= ((x+y)/2 )^2 = 3/4. (단, x,y는 각각 PA길이, PH길이. 산술기하평균부등식 이용)
27번. 규칙 찾으면 첨자 2 증가할 때마다 y좌표 2씩 변화.
28번. 삼수선 정리 이용. D에서 EF에 내린 수선의 발, B에서 EF에 내린 수선의 발(H라 하자) 일치. 따라서 원래 평면에서 DB와 EF는 수직. 이제 평면도형 문제.
점D에서 대각선BD와 수직인 직선 그어서 반직선BA와 만나는 점 X라 하자. AD=3, AB=9이므로, AX=1. 삼각형 XBD, EBH 닮음 이용하면, BH:HD=BE:EX=6:4. cos 세타 = 4/6.
29번. 각ACD=2알파, 각BCD=알파라 두자. 알파+세타=60. AD=x, CD=p라고 둔 후, 삼각형ADC, BDC에서 각각 sine정리 이용.
x/sin 알파 = p/sin 2세타, (1-x)/sin 2알파 = p/ sin 세타. x소거하면, 세타 (sin 알파 / sin 2세타 + sin 2알파 / sin 세타) (p/세타) = 1.
여기서, 세타->0 (알파->60도) 극한 보내면, p/세타 극한은 1/(sin60 /2 + sin 60 ) = 4/3루트3.
30번. 역함수 관계 이용. 각각의 고정된 n에 대해 2^x - n = x 만족하는 x를 t라 하면, -1+n <= x <= t. 개수 세면, a_n = [t]+n.
x=1,2,3,4,5일 때 각각 n=1,2,5,12,27임을 이용하여 다 더하면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
작곡하고싶다 0
컴맹/자본/손가락병신이슈
-
안자는사람 잇나 10
-
기차지나간당 5
부지런행
-
핫도그하나 닭곰탕 한그릇 과자 한봉 비엔나 세개 메추리알 다섯개
-
작년 수능에서는 화작 0틀 백분위 91인데 6,9모에서는 하나씩 틀렸었습니다. 제가...
-
주식 들어가면 0
아오 내가 들어가면 쳐 내리네 ㅋㅋㅋㅋ
-
눈온당 0
-
출석부! 출석부 출석부! 지하철! 지하철 지하철! 공산당! 공산당 공산당! 진짜...
-
스타킹 0
찢기
-
이시간에
-
불면증.. 4
원하는 기상시간보다 45분이나 일찍일어나버렸다
-
잘까 4
흠
-
안자면 큰일날듯 1
옯붕이들 ㅂㅂ
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
동서연고. 1
무요.. 왜요.. 혼잣말이에요..
-
다시 했을 때 메디컬 가능성 얼마나 보시나요?
-
잘때가된건가 5
슬슬
-
발 300 11
손도 많이 큼
-
꾸준히 햇으면 꽤나 올렷을거 같은데 오랜만에 하려니 계속 같은 곳에서...
-
ㅅ..ㅂ 요즘에도 한달에 한번은 뛰다가 무조건 삐는 것 같다
-
키작은 사람이 6
큰 사람보단 끌림
-
마스터 등반 시작
-
응..
-
재밋는건같이해요
-
귀가 ㅇㅈ 2
사실 아까 퇴근하면서 찍었어요
-
키작으면 좋은점 4
애들이 귀엽다고함 헤헤
-
ㅋㅋ 난 작년에 2
공부하는거에도 기출이 잇엇음.한국 기출만 봤을 때2008년도부터 2023년도 기출된...
-
새르비 화력 테스트 18
유동인구 10명 넘을까?
-
팩트는 0
마이 베스또 프렌드들은 몇시간째 디코를 하며 롤을 하고 잇다는거임.지금도 디코에...
-
굿모닝 1
ㄱㅁㄴ
-
오르비 굿밤 2
전 자러감
-
서버 어머같네요 0
ㅎㅎ
-
맞팔 구합니다 3
현역학생입니다 물리러에요
-
ㅇㅂㄱ 1
수업가야겠군
-
연구원인데 떼잉,,삼각함수랑 수열을 훨 잘함 지로함에 비하면
-
ㅇㅈ 13
새벽이니까 다행일듯 내 손임 펑~~
-
학벌딸 치고 싶어서 인거 같음 그냥 병신 한남 자존감 밑바닥 루저새끼라 뭐라도 하나...
-
안 맞게 공부를 하고 잇음 ㅋㅋ,,내 공부 이론대로 하는 공부가 좀 상당히 피곤함....
-
내 차단리스트 1
없음뇨
-
응.. 부러워..
-
침대에서 자면서 망상함
-
지로함 6
평가원에선 잘 모르겟는데 (어렵게 안 내서), N제같은거 보면 되게 재밋는 문제...
-
무슨 이미 의대 붙은 것마냥 의대 성적 되면 의대를 갈까 설대를 갈까? 의대 가면...
-
수강 신청 0
막 20학점씩 신청 해놓고 나중에 빼는 방법 좋나요? 예상대로 안될 때가 많으니...
-
기출 좋앗던거 3
241122 (개 잘 만든문제)121130 (함수의 증가속도, 아주 중요한 관점)...
-
국회증언법이랑 양곡법 이런거 비판하는 내용있으면 너무 그렇지??..
와 찍은거빼고 다맞네 ㅡㅡㅠㅠㅠ
...
수리 가형 29번 왜틀렸지 ... 아직도 이해가 안감
1컷 몇점정도 예상 하시나요 ? ㅠ
글쎄요.. 지금 보니 88~92점인 거 같은데, 92점쪽이 좀더 우세한 것 같네요.. 힘내세요!
syzy 님 ,.... ㅠㅠㅠㅠㅠ
잘 하셨나요~? 잘 하셨길 빌지만 혹시 아니더라도 힘내세요. 시험 보느라 정말 고생하셨어요! 푹 주무시고 주말에도 좀 쉬어주세요~
저 수리 태그에 마지막으로 문제하나 투척했어요 ㅋㅋ
syzy 님은 굇수니까 .. 풀어주세요 ㅠㅠ
1개틀렸다 ㅇㅎㅎㅎㅎ
시지님 쪽지 확인점.. ㅎ