2월 16일(목)
게시글 주소: https://orbi.kr/0002776808
*단원: 수2 방정식과 부등식+함수의 연속~미분(이과 전용)
*예상정답률: 40%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라이브는 강의비는 저렴하던데 교재나 컨텐츠 이런거 다하면 보통 얼마나오나여 개학하면...
-
문과로 0
바꿀건데 확통노베면 미적은 그대로하는게 나을까요 미적을 잘하진않지만 확통은 아예노베라
-
현실에선 국숭세 부경인아곽 이 라인이 몇프로인가요? 4
한 15프로 하려나
-
좀 과한가 삼성 정품 65W 트리오 충전기임
-
이정도면 아싸히키맞냐?
-
흐흐흐ㅡㅎ
-
나도 자야겠네 13
-
기대된다
-
잠이 안 옴 9
진짜 어캄
-
아 자다가 깸 17
ㅈㄱㄴ
-
못버티겠다 15
자야지...
-
정혼 당함 3
2학년 1등해서 받은 교육감상 상장 엄마가 카톡 배사 했는데 우리동네 사는 어떤...
-
동물배틀 on 8
고려대 호랭이랑 한양대 사자랑 싸우면 누가이길거같음?
-
다 님들이 만드시는거에여?
-
솔직히 어린시절부터 내 이름 별로 안좋아했는데 모 고닉이랑 장난삼아 이름바꿔보니까 둘한테 다 좋아보임 13
그냥 이름바꾸고 싳다 진짜로
-
현재 모고 국영수 435에 탐구는 제대로 봐본적도 없는 그냥 공부 안하는 인생망한...
-
이제자러가야지 4
큰일남일곱시반에일어나야되는데 다망했어
-
뭐가 더 낫지 15
커피 vs 몬스터
-
맨전드 캬
-
여행이 땡긴다 2
미드나잇 인 파리 극장에서 봤는데 여행가고싶다
-
크하하하하
-
오야스미 4
네루!
-
방향이 잘못되면 성적이 안 나옴?
-
야식 ㅇㅈ 10
불닭큰컵+핫바
-
똑같이 푹 쉬었는데 왜 토트넘은 부상 복귀하고 우리는 멀쩡하던 4명이 사라져요???
-
제 전적대가 전문대라 학점이 거의 만점에 가까운데 괜찮은 학교에서 3후반~4점대...
-
버그겠지
-
언제 어디선가 꼭 되돌려 받을 수 있길 바랄게요 오르비언들 좋은 밤 되세요
-
저번에 시킨 지점은 고바순 조각을 작게 해줘서 소스 찍어서 한입에 먹기 좋았는데...
-
숏컷하면 이상하게보려나 11
머리감기 귀찮아서 졸업사진 찍고 숏컷하고 싶긴한데… 좀 이상하게 보려나요?
-
닉네임 뜻 14
노래제목에서 따왔어요
-
맛있으면 우는 고양이
-
ㅎㅎ
-
여친 생일 선물 .. 10
추천좀 해줘용ㅇ..ㅜㅜ
-
브라마굽타 3
브라마굽타
-
마지막 기회)파리비 레어 사시는 분 1만5000덕 드림 9
여기서 안 팔리면 걍 안고 삶
-
댓글 제일 먼저다는 사람의견에 따르겠소
-
ㅎ 아 트레블당하는건가?
-
2월도 절반이 지났군 10
-
연고대 서성한이 한성대, 삼육대처럼 약술형논술 시행으로 바꾼다면 어떻게 될까?
-
안녕하세요 올해 21살된 05년생 남자입니다 다름이 아니라 24수능을 친후 지잡대를...
-
새르비 특 4
새르비언이 함
-
인사해주세요 3
반가워요 선생님,, 오늘도 머리에 잡음으로 가득해서 잠이 안 오네요.,.
-
동아대 논술 0
왜 동아대 논술은 없니? 신한대, 강남대 약술형 논술 있잖아
-
진짜 독헉재수할때 너무 힘들고 외롭고 우울할때(특히...
-
우리나라에 없는 것 같아 삼 대학 가서 여기다 음료 담아서 강의실에서 마셔야지
-
맞팔구 6
-
홈팀의 무덤 맞죠? 원래는 원정팀의 무덤이었던거 같은데?ㅎㅎ
20
정답ㅊㅊ
댓글 너무 빨리달리네여 ㅋㅋ
문제 해석이 너무 어려워여 ㅠ
첫 정답자라 반가운 마음에ㅋㅋ 잘 하시네요
ㄴㄴ 오래걸렸어요 ㅋㅋ
님 pnmath.com 여기 오세여 ㅋㅋㅋ
여기다가 투척하면 사람들 좋아해여 ㅋㅋ
아ㅋㅋ 포만한 가입하고는 싶은데 네이버 아이디가 없어서요ㅜ 폰도 없어서 네이버 가입을 못함ㅜㅜ
나중에 사정이 나아지면 방문할게요ㅎㅎ
20
정답ㅋㅋ
이게 왜 정답률이 60퍼인지 모르겟네요 ㅋㅋ; 문제 이해 자체도 안되군요 ㅠㅠ
흠... 60퍼는 좀 높게 잡은거 같네요... 우선 무리방정식의 근을 찾습니다 그리고 문제 마지막의 극한값이 의미하는바를 캐치해보세요
아 어렵네요 ㅠㅠ
젠장 ㅠㅠ
풀이 좀 부탁드려요..
아랫분이 풀이도 올리셨는데 참고하세요ㅎㅎ
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
아랫분 풀이는 어딨나요 ㅠㅠ?
제가 댓글로 써드린게 그 풀이에요ㅎㅎ 비밀글로 주신 내용이라...
와 어렵네요 풀긴풀었는데 맞게푼건지몰겠네요 저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20이나왔는데요
맞게푼건가요?ㅠ 수2기억이가물가물해서
네ㅎㅎ 완벽하네요ㅎㅎ
극소값t라는게 무슨말인가요?? t가 이차함수의 극소값이란소리??
네 그렇죠... 문제에서 이차함수 f(x)가 (가),(나)조건을 만족시킨다고 했으니 이차함수의 극솟값이라는 뜻입니다
f(x)=-3, f(x)+5
이렇게2개나오는게맞나요??
네 맞아요~
그러면 서로다른 실근의합 합은 -a인가요?
a는 어떤것의 미지수로 놓으신건지요...? 문제에는 a라는 문자가 없는데...
x의 1차항을a로 상수항을b로생각
f(x)=-3또는 f(x)=5일 때 각각의 합은 -a맞죠...
그럼 2개 걍더해서 해도되는건가요??
풀이도 같이 적어주시면 좋을 것 같습니다...
f(x)=x^2+ax+b라고 놓으면 5하고 -3 넘겨서 계산하면, 각각 같은 근은 존재할수가 없데되서 걍더했는데..그리고 t=-a^2/4+b이거 맞나요?? 그리고 a값은 고정된 실수이고 b값만변하고, 그래야하는것 같은데.. 그리고 식전개했더니..이상햊네요.
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보면 3a=30 a=10이 나올겁니다
극소가 -3+0 인경우에는 이게무슨말이에여??
극소가 -3+0이라면 f(x)=-3인 경우의 해는 존재하지 않기 때문에 f(x)=5인 경우의 해만 생각하면 됩니다
마찬가지로 극소가 -3-0이라면 f(x)=-3과도 서로 다른 두 점에서 만나므로, f(x)=-3과 f(x)=5 두 가지 모두 각각 두개씩 해가 존재하구요...
아하..감사합니다.. 님은 머하시는분인지...대단
ㅋㅋ 감사합니다 저는 걍 이런거 취미로 하는 수험생과 대학생 사이의 신분에 있는 사람입니다
흐엉 ㅠㅠ 보기 '나'가 쫌 어려운거 같애요 ㅠㅠ 제 실력탁이겠죠 ㅋㅋ
죄송한데 해설좀 말씀해주실수 있으신가요? 너무 궁금하네용...
중간에 어떤분이 풀이도 올려주셨는데 그거 소개해드릴게요ㅎㅎ
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
25
아닙니다ㅜ
앗 실수;; 20인가요?
네 정답이에요ㅎㅎ
20인가요?ㅋㅋ
네 정답이에요ㅎㅎ
20이요 ㅎㅎ 문제를 잘만드시네요
정답입니다ㅎㅎ 감사합니다ㅎㅎ
20인가요??...ㅠ
20 깔끔하게 해석만 하면 풀게끔 만들어진 문제인듯 ㅋ