6평 수 가 18,27,28번 살짝 다른 관점
게시글 주소: https://orbi.kr/00023042522
6평 치고나서 학교친구들의 보편적인 풀이법과 다른 거 같은 것들 소개하려 합니다.
사실 여러분들이 보기에 "엥 당연히 생각나는 거 아냐?" 하실 수도 있습니다.
먼저 18번
부채꼴 모양이 직선위로 움직인다고 생각하면 쉽겠죠...?
27번
이건 아마 많은 분들이 생각하셨을듯 합니다.
28번
제일 야매같은 풀이입니다. 0극한 상황을 직관적(?)으로 생각해서 삼각함수가 아니라 간단한 다항함수로 쉽게 나타나는 것인데요. 생각보다 많은 평가원 문제가 (70~90프로?) 이런 방식으로 해결 가능합니다만, 가끔 그냥 삼각함수로 나타내는 게 쉬운 모양이 생기기에 정석풀이법을 익혀야 합니다.
부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
성적 존나 불투명하다 시발
-
네에~!
-
킬캠 1회 후기 0
27틀 97 12번 살짝 새로웠음 13번 늘 보던거 14번 바로 안보여서 덧셈정리씀...
-
이제 헬스나 가볼까
-
물1 화1 하다가 사탐런하는 상경계열 지망생인데요 단순암기 잘하고 이해문제풀이도...
-
큰일났다 7
짜파게티 끓이는데 계란이 없음..
-
예상 미적 1컷 84~85?(수능표본) 전반적으로 계산량이 미쳤고(특히 29 30)...
-
싶다..
-
걍 오늘 공부 쉬엄쉬엄할까
-
ㅇㅇ
-
걍 외워야지 에휴..
-
휴가 얼마 안남아서 그런거같긴한데 아 그냥 만성피로+재수생활ㅈ같음 합쳐져서 조금만...
-
쌍둥이 동생인데 한 명은 국어 수학 100 100 받아왔고 한명은 국어 65 수학...
-
싹다 중간이라 가정하면
-
없으면 만들게
-
하루에 2개씩 풀까.......... 사탐도 해야하는데
-
사탐 가산점있는대학 16
과학유튜브보다가 가슴이 뛰어서 진짜 쌩노베인데 물리 공부해보려고하는데 특정과를...
-
인증 7
을 해볼까요 처음이자 마지막으로
-
난이도 편차 뭔데요.. 가끔다가 번호에 +2 해야할것들도있네
-
10 12 21 22틀 ㅅㅂ..
-
대칭키의 보안 취약에 대해 설명한 문단 뒤에 대칭키의 보안 단점을 커버한 공개키예시...
-
불꽃확통+어싸+미적+기하수특 이새끼 뷔페가면 혼절하겠노ㅋㅋ
-
볼텍스푸는중 12
근무하면서 하루에 열개씩만 푸는중인데 퀄이런거는 모루겟고 수1은 참 깔꼬롬햇음
-
다군은 서성한까지만 있는 거로
-
더프로는 보정 3나옴
-
키얼굴대학여친다가진새끼가 가챠겜 2돌로 비틱함 그래서 뒷산에 묻어줌
-
탐구 개념 시작도 안함. 국어 5등급 수준임. 문학 아예 안읽힘
-
유심 교체는 힘들거같고 걍 통신사 이동하려는데 통신사 이동하는 것도 해결책으로 적합한가요?
-
6모전까지 자주는 안 올 듯 아마..?
-
볼텍스 풀까요 6
고민이댑니다 미적임
-
내신 ㅆㅂ 0
3학년때 떨어져서 걍 버려야하나
-
니들은 이런거 걸리지 마라
-
1단원 개념->기출 2단원 개념->기출 아니면 전체 1바퀴 돌리고 1단원 내용...
-
다른거도 어렵긴한데 수2가 ㄹㅇ 손도 못대겟
-
뉴런 0
확통 넘 오랜만에 해서 기본적인 내용도 막 까먹고 뉴런에 약간 이해 안 되는 부분도...
-
언매를 해야겟다 4
아직 개념도 다 못돌림 잣댐
-
너무 무근본 가지치기를 많이해서 좀 생각하고 싶은데 뭔가 유튜브나 강의 중에 이거...
-
동치조건인 명제를 찾는거의 연속인가 님들 이게 본질임?
-
국어 존나 틀렸네 국어는 그대로인게 너무 슬퍼
-
풀어보고싶네
-
로션발라야하나
-
엄청 논리적으로 풀고있지 않았네 아이고 지금이라도 제대로 뜯어 고쳐야겠어요
-
달려볼가 0
휴식 슈웃
-
평타인가요? 희망회로 돌려야지 3.7인거같아요..
-
88점(20,29,30)인데 6평에 이거나오면 1컷 어케될지가 궁금하네
-
ㄹㅇ그래야 운동할듯
-
생윤 윤사는 실개완, 기시감등이 있듯이 사문은 뭐 없나용?
28번 같은 방법으로 작년 수능 18번 풀면 놀라운 결과가 나오죠...
5초컷...
저 궁금한게 있는데요 , m>n 확률 이랑 m<n 확률이 왜 같은건가요?
m이 먼저뽑는건데 확률 서로 달라지지 않나요??
총 경우의 수로 생각하면 m과n의 나올 수 있는 경우의 수가 대칭적으로 분포함을 알 수 있고,
뽑은 경우를 제3자가 결과만 봤을 땐 각 수들을 랜덤으로 배열하는 것과 같기 때문에 둘 확률은 같다고 추론할 수 있습니다.
아 그리구 28번 풀이도 이해가 안가요
s1 s2 넓이 어떻게 구하신거에요??
세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다! 사용하는 역량에 따라 아주 일부분의 문제만 적용시킬수 있거나 거의 모든 문제를 적용시켜 쉽게 풀 수 있고, 극한의 상황을 해석하는 능력을 기르면 정석풀이에서 막혀도 부분적으로 활용할 수 있기에 전 고2내내 이리 풀다가 고3 들어와서 정석풀이법을 익히고 있습니다. 사실 게을러서 편법만 쓴 거지만...
님이 말씀하신 " 세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다" 이것은 이해가 가는데요
s1 s2 넓이를 구하기 위해서 쓰신 식이 이해가안갑니다 .. 그러니까 s1 s2 넓이를 어떻게 구하나요? 부채꼴도 아니고 아무것도 아닌 도형인데 어떻게 넓이룰 구하신건지 모르겠습니다
S1은 사다리꼴 S2는 직사각형으로 근사시킬 수 있습니다 전자의 경우 위 이미지를 보시면 아실 수 있을테고 후자는 QB와 RB의 곱으로 넓이을 나타낼수 있는데 QB를 나타낼 순 있으나 구조상 복잡하니 극한시 0으로 간다는 점을 이용하면 이 두 변과의 곱은 세타가 영으로 갈때 0으로 수렴하는 세타 이차식이 나옴을 알 수 있습니다. 여기에 세타를 나누어도 0으로 가기에 s1의 값만 구하면 되는 겁니다.
친절한 답변 감사합니당~~