회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00019274293
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
방금 땡잡았다 0
콜드플레이 막콘 취소표 건짐
-
내에플팬슬 이거20만원짜린데 후
-
스레기야
-
ㅈㄴ웃길듯
-
.
-
이 ㅅ7끼 칼바람에서 왤케 쎔? 너프좀 ㅅ
-
하지만 개강하기 전에 정상화 시켜야 돼.. 하루 한 끼 먹고 3~4시간 자는데 일은...
-
비갤 저격 글 7
이거임, 무려 이때도 개구리 아니냐고 저격 먹엇음사실 이 때는 내가 특정 사람들한테...
-
삼반수 2
(언매미적사탐)현역53233-> 재수31211 탐잘이라 올해 서성한 못가서...
-
저는 남자로써 1
누구 한명 싫어도 비갤이 아닌 여기서 저격을 하고 잘풀리면 wwe 안풀려도 ufc를 열겠습니다 선서
-
집에서 지원을 안해주신다 하셔서 자비로 반수했는데, 수시로 온 곳 정시로 올 성적이...
-
아아악
-
어떤 사람이 닉 추천 글에 댓글로 자기 전 닉네임 추천함
-
6학점듣고 반수하려하다 망해서 엇복학하고 재도전합니다 0
질문 받아요
-
추가모집도 추합이 있는지 아니면 최초합밖에 없는지 궁금하네요..
-
귀엽다는거임
-
ㅠㅠㅠ
-
수2 자작문제 0
나중에 교사가 되면 어떻게 서술형을 만들까 생각하면서 만들어 보았습니다. 풀이 과정...
-
무기한 휴르비 1
-
동국대 3
저도 유사 대학생 쌩재수 친구 없나용
-
시대 재종 0
대치에서 목동관으로 옮길 수 있나요?
-
비슷한가요?
-
냥대 크아아아악 6
크오아오아앙
-
개빡치네
-
이미지 배출할게요 26
뭔가 모험적인거 좋아할 것 같다 항상 자기할건 다 해놓고 놀러가는 스타일?...
-
뭔가 자주본 옯창들중에 15
맞팔안된사람이 많네
-
흠.....아닌가? 아니다
-
심신미약 상태엿음 원래 딴 닉이엿는데 심신미약 상태가 안 됏다면 오르비 제대로...
-
흐음
-
선택과목 고민하는데 이유가 “나중에 메디컬 성적 되면 디메리트 있나.”인게 걍...
-
질문받습니다 15
제발너무심심하니까해주세ㅛㅡ요부탁입니다
-
https://m.megastudy.net/mobile/smart/bookMall/e...
-
나 심심한 때 18
자꾸 내 게시글 와서 님 개구리 맞죠? ㅇㅈㄹ하는 애가 잇엇음 그래서 뉴비엿던 내가...
-
집만오면 멀쩡해짐 으아자고싶어
-
무물보 15
ㄱㄱ
-
낼 일찍 일어나서 버티다 저녁에 쓰러져야게써
-
치명적인 결과를 초래하는
-
머지 님들제프사보이시나오
-
바로 기절해서 잠들수o?
-
맞춰볼래요
-
야자타임 7
야ㄷ 자ㅇ 타임
-
ㅠㅠ 오늘또 실패
-
나도 탈릅하면 0
오르비에서 날 추모해주겠지? 는 개뿔 아무도 모를듯 ㅋ
-
2번 먹음 여기서도 먹음 그때 3관왕을 한 닉으로 달성햇음 심심한이엿음
-
열라면 삼 0
이거 먹고 자야지
-
저도 야자타임 9
이제는 말할 수 있다 ㄱㄱ
-
비갤은 뭘까 4
이런 문화라니 정말.. 대단해..
-
오이카와에게 이제는말할수있다 ㄱㄱ
-
제대학전부주작이에요
전 멍청한가 보네요. 글 열심히 쓰신 것같은데
하나도 이해를 못하겠음
이해하기 어렵게 쓰여진 글이에요 ㅠㅠ 전제되는 내용들을 하나하나 다 설명하면 글이 너무 길어져서 ㅠㅠㅠ
보기가 두 명제를 반대관계로 제시하고 있다는 사실로부터 존재함축은 바로 추론됩니다. 각 명제의 참 여부와는 아무 상관이 없습니다.
보기는 반대관계에 놓인 명제에 대해서 모두 거짓일 수 있다고 말하고 있습니다. 학생이 존재하지 않는다면 주어부가 공집합이 되어 고전논리의 관점에서 두 명제는 나란히 거짓이 됩니다. 무엇이 추론된다는 것인지 모르겠습니다. 존재함축이란 전칭긍정이든 특칭긍정이든 전칭부정이든 특칭부정이든 아무튼간에 무엇인가가 참이 될 때 존재가 함축되는 것입니다.
학생이 존재하지 않는다면 보기에서 반대관계에 놓인 두 명제가 모두 참이 됩니다. 전건이 거짓이기 때문입니다. 하지만 반대관계는 두 명제가 모두 참이 되는 것을 허용하지 않습니다.
그것은 고전논리학의 관점이 아닙니다. 부울 이전의 고전논리학은 주어부가 공집합일 경우 명제는 무조건 거짓이라 간주합니다. 정언명제가 참이 되기 위해서 주어부는 공집합이 아니어야 합니다. 유니콘은 동물이다 - 따위의 명제는 고전논리학의 관점에서 거짓입니다.
모든 유니콘은 동물이다와 어떤 유니콘은 동물이다는 반대관계에 놓여있습니다. 그러나 두 명제는 모두 거짓입니다 (고전논리학의 관점에서). 말씀하신 것은 고전논리학에 들어맞는 이야기가 아닙니다. 고전논리학과 현대논리학의 가장 큰 차이는 주어부가 공집합일 떄 명제를 어떻게 처리할 것이냐에 있습니다. 부울을 기점으로 관점이 갈립니다.
보기의 두 명제를 각각 P, Q라고 하겠습니다. 두 명제가 반대관계에 있으므로 가능한 경우의 수는 다음 세 가지입니다.
1. P가 참이고 Q가 거짓(존재함축을 전제)
2. P가 거짓이고 Q가 참(존재함축을 전제)
3. P와 Q가 모두 거짓
문제가 되는 것은 3입니다. 3은 말씀하신 것처럼 학생이 없는 가능세계를 전제합니다. 전통논리학에서는 해당 명제들이 참이라는 것이 존재함축을 전제하지 해당 명제들이 반대관계에 있다는 것만으로는 존재함축을 전제하지 않습니다. 반대관계에 있는 두 명제가 동시에 참만 아니면 되기 때문입니다. 그런데 3에서 학생들이 없는 가능세계를 전제하면 전통논리학에서 P와 Q는 모두 거짓이고 이 경우 반대관계의 성립과 아무런 모순을 일으키지 않습니다. 따라서 보기는 반드시 존재함축을 한다고 볼 수 없습니다.
보기가 존재함축을 하지 않는다면 선지 3번 역시 존재함축을 한다고 볼 수 없고 그렇다면 전통/현대논리학의 관점과는 상관없이 선지 3번의 두 명제가 모두 거짓인 경우가 존재합니다.
제가 이해한 바로는 이런 결론을 도출하신 것이 맞나요?
거추장스러운거 필요 없이 무조건 아님~
기념품좌가 팩트폭행 들어가신다~!
의견 감사합니다. 다만 1은 허수아비 공격의 오류입니다. 제가 1을 전제하지 않았기 때문입니다. 굳이 고전논리학을 따질 필요도 없이, 그러한 논의는 ③의 '어느 세계에서든'을 만족하지 못하기 때문에 의미가 없습니다.
2도 마찬가지입니다. " P와 ~P 모두에서 학생이 존재한다는 사실을 전제하는 일은, 그것들이 둘 다 거짓이 될 수 없다는 지문 내용을 무시하는 일입니다."라고 하셨는데, 학생의 존재를 전제하지 않았습니다.
그리고 이러한 반론은 배중률과 모순관계를 헷갈리시는 데 기인한 것 아닌가 싶습니다. 모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다.
마지막 문단에 대해서는 제가 아래 링크 예상되는 반론2에서 충분히 설명했다고 생각합니다.
http://dotheg.com/221400173453
모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다 -
그런데 기술자님께서 3번 선지가 맞다고 논증하신 과정을 살펴보면, "모든 학생은 연필을 쓴다" 와 "어떤 학생은 연필을 쓰지 않는다" 의 두 문장 가운데 하나는 배중률에 의해 참이 되며 제 3의 가능성은 없다는 이야기로부터 논의를 시작하고 있습니다. 배중률에 의해서 두 문장 가운데 하나가 참이 되려면 두 문장은 P ~P관계여야 합니다. 저는 3번선지의 두 문장이 모순관계가 아니라는 이유로 기술자님의 주장을 반론하는 것이 아닙니다. 기술자님께서 모순관계로 세팅해놓은 두 문장이 모순관계가 아니라는 이유로 반론하고 있는 것입니다.
3번 선지의 '어느 세계에서든' 에서 임의의 세계는 학생이 없는 세계도 포함해야 합니다. P U ~P = U가 되지 않는다면 P와 ~P가 모두 거짓이 되는 가능세계가 존재하게 됩니다. 그것은 모든 가능세계에서 P ~P중 하나는 참이어야 한다는 지문의 주장에 반합니다. 학생이 없는 세계는 얼마든지 가능하며, 포괄성에 의해서 그와 같은 가능세계는 존재합니다.
학생이 없는 가능세계에서 라면 모든 학생은 연필을 쓴다와 어떤 학생도 연필을 쓰지 않는다가 모두 참이 되죠. 학생이 없는 가능세계를 상정하는 것은 보기와 정면으로 충돌합니다.
학생이 없는 가능세계에서는 모두 거짓이 됩니다. 부울 이전의 고전논리학에서는 주어부가 공집합이면 명제는 경우불문하거 거짓이라 이야기합니다. 이에 대해서는 본문에서도 이 글의 댓글에도 누차 되풀이하여 이야기하였으니 참고 부탁드립니다.
그렇다면 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓입니다. 이는 고전 논리학의 논리법칙중 하나인 배중률에 어긋납니다.
그러니깐 제 글의 요지가 P : 모든 학생은 연필을 쓴다 의 ~P가 어떤 학생은 연필을 쓰지 않는다가 아니라는 것입니다. 죄송한데 제 글을 다시 읽어주시길 바랍니다. 지적하시는 내용들이 전부 본문에 있는 내용이라서, 그것도 가장 핵심적인 비중으로 상세하게 언술되어 있는 내용이라서 그렇습니다.
순환논리입니다
글을 읽어주시기 바랍니다. 정말 죄송하지만 글을 읽지 않고 댓글을 다시면 뭐라고 말씀드리기가 곤란합니다.
지금 p ~p 가 모순관계가 아닌 이유로 주어가 공집합인 경우의 반례를 들 수 있어서라 하셨는데 그것을 배중률로 반박하니 또 p ~p 가 모순관계가 아니라 반박하시면 순환논리입니다
작성자님의 반론은 크게 2가지입니다.
첫 째, 학생이 존재하지 않으면 '보기'의 명제가 모두 참이 된다는 것. 그러나 '보기'의 명제는 모두 거짓이 됩니다. 이것은 이해황님도 동의하는 부분이며 그냥 그 자체로 팩트입니다.
둘 째, 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓이다 - 이것은 사실 반론이 아니라 저를 도와주시는 겁니다. 제 글을 읽어보셨다면 아시겠지만, 상기 사실은 제 글에서 가장 주요한 근거로 활용되고 있기 때문입니다. P ~P는 배중률을 만족해야 합니다. 그런데 작성자님처럼 ~P를 설정하면 배중률을 만족하지 않습니다. 따라서 ~P를 배중률을 만족하도록 제대로 설정해야 합니다. 그런데 계속 저한테 배중률을 만족하지 않는데요? 하시면 저는 제말이요 제가 그럤잖아요를 반복할 수 밖에 없습니다.
P : ∀x(Px->Qx) & ∃x(Px) 라면,
~P : ~∀x(Px->Qx) ∨~ ∃x(Px)
여야 한다는 이야기입니다.
(P는 제가 특칭긍정으로 했습니다만 무엇으로 하든 이야기의 맥락은 같습니다)
같은 내용으로는 더 이상 말씀드리지 않겠습니다.