★[문과] 수학적 귀납법 30초안에 푸는 방법 ★
게시글 주소: https://orbi.kr/0008138889
귀납법 글.pdf
![](https://s3.orbi.kr/data/file/cheditor4/1603/PeG7omFpaAXtNtjXfqv9sFIVDW.png)
![](https://s3.orbi.kr/data/file/cheditor4/1603/ZXlB1Jc7zyKGH9rFJuaTJmmFSViWa3.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1603/eLXEyJQm.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1603/3UQ8uyVeIUlQR4CiwuSrQh.jpg)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
??
-
ㄷㄷ
-
동기들한테 진학사 칸수들 까다가 연경 적정이엿다니까 하나같이 왜 연경 안썻냐고...
-
왜 항상 최악의 길만 찾아가는걸까
-
국어 고전 연계 0
선배님들 혹시 국어 고전파트는 무조권 연계인가요? 아니면 연계 작품이 아닌 비연계...
-
지금까지 홈페이지 발표는 하루씩 당겨서 했는데 전추도 그럼 하루 당겨지나요? 아님...
-
아! 아! 아르헨티나~
-
지1 수특 리뷰 0
종이쓰레기 난이도는 물로켓에 수능 형태도 아닌 어디 내신에나 나올거같은 문제만 한가득
-
1년간 학벌 열등감을 가슴에 품고 살 수 밖에...
-
그니까 오늘 지스트 유니스트 모두 뜸 아니 내가 연초로 디지 붙은게 신기할 지경이야...
-
상남자의 진학사 2
숭자전-5칸 홍경-2칸 동가-1칸 3합8 캬ㅑㅑ 거의 수능최저학력기준급
-
작년에 눈팅할때 이런성적 봤는데
-
중대경영도 4칸이라 나름 내기준에선 지른거였는데 왜 2칸따리 서성한이 더 낭낭하게 붙는거지크아악
-
제곧내용 지금 스타팅 블록 다 해가고 끝나면 바로 카이스 아나토미 들어갈건데 카이스...
-
이번에 붙으면 좋겠네요
-
굉장히 벅차오르는 영상들이 많답니다
-
1차 3 2차 5 3차 5 이 정도면 빵인가?
-
한양대 공대 붙었는데 새터 신청은 어떻게 하나요?? 정시라 이미 기간 놓친건 아니겠죠?ㅠㅠ
-
1명도 안빠지네 0
징하다징해
-
나만 사나이 클럽이었군
-
내가 퀄리티를 잘 볼줄 모르긴함
-
안 나오네
-
왜 아직도 여기 있는거지... 설마 아직 수능에 미련이 남은겅가...? 아님 저같은...
-
ㄴㅇㅅ
-
교수님이 여러분을 기다리고 있어요 수업은 잘 못하셔도 이해 해주세요 어차피 책...
-
비명문 불지옥에서 타죽고있는 허수면 갳우ㅋㅋㅋㅋㅋ
-
사탐런 경제 0
3떨하고 재수할거 같은데 사탐런 사문 경제 하려는데 경제 선택 괜찮나요? 공대나...
-
연세대 6~9칸 성균관대 8~9칸 이쯤되면 사실 누백보다 그냥 반영비 따라 갈리는...
-
문과 수능수학 3
솔직히 문과 현역이 수학 공부해서 수능 때 최종 3뜰 가능성이 얼마 정도라고...
-
설대2차발표함? 1
할시간인데
-
오늘만 3번 발표 진짜 전추 전에 홈페이지로 뽕뽑으려는 저 열정
-
전추 때 많이 돌려나 흠….
-
???엄청 빨리도나봐요 알바 출근중에 전화받아서 놀랐던..ㅋㅋㅋ
-
이걸로 붙을 수 있었던 과가 있었다는 게 신기
-
드디어 12
예금 만기일
-
이보다 더 나아질수 있을지를 모르겠음
-
문과 비상경인데.. 상경 산보나 경영 전과 난이도 어떤가요?? 전과 도전 해보고...
-
여기서 누가 안정카드가 4칸이길래 뭔 미친소린가 했음 9
걍 삼수하려고 원서쓰는줄 알았음 근데 ㄹㅇ안정이더라
-
이번에도 엄청 빗나간거 같은데..
-
난8칸합임사실 4
그렇게됐다
-
아니면 ㄹㅇ 사람이 빠진거냐.... 하아..
-
서성한 가기 어려움 13
제가 불합격 해봐서 잘 앎
-
나도 7칸합임 2
원서 7-9-9 일케썼음 3합 25
-
어떻게 먹은 티오인데 대학이 그걸 뱉을리가 간만에 돈 땡길 수 있는 기회인데
-
07자퇴러 고민 1
26수능 보고 27수능 재수나 반수 vs 26수능 보고 바로 입대 후 28 수능 준비 뭐가 낫나요?
-
4칸합=정상입결 5
ㅇ
-
한 학교 내에서 높과 3~4칸 중간과 4~5칸 낮과 6~7칸 중간과쓰면 폭사...
크으 이거 삽자루t한테 똑같은 팁 전수받고 안 풀리는 문제가 없었는데
ㅎㅎ삽자루샘도 이팁을 주셧군요 영광이네요똑같은팁이라닝ㅋㅋ
네 다음삽자루
ㅋㅋㅋㅋ저삽자루아뉘에요!!!ㅋㅋㅋ
고2때 분명히 수학적귀납법파트는 전부 발로풀엇엇는데 작년이랑 올해 귀납법이 잘안풀려서 엄청 고민이엇는데 잘보고갑니다 ㅎ
우왕 ㅎㅎㅎ 도움이 되셨다니 너무 기쁘네요 ^^** 저방법으로 다음 모의때 꼭 맞추세용 ♥
어ㅋㅋ 이거 제가 맨날 쓰는 방법인데ㅋㅋ 진짜 이 방법 쓰시면 미친 문제가 아니고선 못푸는 문제가 없어요! 안풀리면 그냥 전후 식 다 풀어버리면 되니까..
ㅋㅋㅋㅋ 애플사이다님도 이 방법 쓰셧군여 !! ㅋㅋㅋ 이거 짱이죠 ㅋ 그냥 풀리니까요 ㅎㅎㅎㅎ 귀납법은 틀릴 일이 없겠어요 ㅎ
원래 대부분 저렇게 하지 않나요? 근데 (시험때 시간절약 연습위해) 저렇게 하면서도 다른 한편으론 논리적 유도를 병행 하는게 사고력과 논리력 기르는데 도움 될듯요...
네 ㅎㅎ 여기에다 귀납법 증명과정 이해까지 덧붙이면 금상첨화입니당 ㅎ 그런데 저 방법을 모르는 몇몇도 꽤 있고, 저 방법이 시간 줄이는데에 많은 도움이 되어 글 올려봤어용 ㅎㅎㅎ
4점치고 엄청쉽게나와서 개꿀빠는 파트중 하나죠 ㅋㅋㅋ..
마자용 무조건 맞춰야 하는 문제입니당 !!!! 흐흐 ㅋㅋㅋㅋㅋ
와.. 정말 감사해요ㅠㅠ 저는몰랐어요ㅠㅠㅠㅠ
히힝 ㅋㅋ 저 방법두 이제 알아두시면 되겠네요 ㅎㅎㅎ 제가 더 감사해요 ㅎㅎ
저게 변변곱을 필요로하는 문제에서도 되나요?
넹 어떤 형태로 나와도 1번 2번방법 적용이 가능해여 ㅎㅎㅎㅎ
혹시 모르는 문제 있으시면 올려주셔용 풀이해드릴께여
진짜 비꼬는거 아닌데요..ㅠ
이거아니면 다른분들은 어떻게 푸시는건가요
원래 계속 저렇게 풀었는데.. 다른분들은 그럼 첫줄부터 전개하면서 하시는건가요???
너무 당연하게 생각해서;; 진짜 비꼬는거 아니에여 죄성합니다 ㅠㅠ
ㅎㅎㅎㅎ 저렇게 접근하면 바로 풀리는데 귀납법 증명의 원리로 접근하다보면 괜히 어렵게 풀게되는 면이 있어여 ㅎㅎ
증명의 원리를 모르고도 단순히 저렇게 풀수 있다는게 함정이져 ㅋㅋ
귀납법 증명의 원리로 전개한게 저 빈칸 전개과정이고
우리는 그거보고 적으면되는데 원래 저렇게 등식인걸 확인하고 푸는거지않나요?
다른풀이가 있나요?? ㄷㄷ
등식인건 당연한게 맞죠
근데 등식인걸 이용해서 안풀릴경우 맨위로 올라가는거를 놓치시고
고민을 길게 하시는 분들이 있어서 올렸어용
그냥 증명 과정 따라가면 식이 보이기도 합니다 ㅋㅋ 뭐하러 전개까지....
가끔 점화식문제들 보면 일반항 유도 기교에 감탄이 나올때가있죠...ㅋㅋ 문제 나올때마다하나씩 배우곤 합니다.
ㅎㅎㅎ 마자용 원래 귀납법이 빈칸문제로 나오기 전에 점화식이 빈칸문제로 나왔었죠 ㅋㅋ 이제 귀납법이 대세니 ㅋㅋㅋ 글 도움되셨으면 합니당 ~! ㅎㅎ
ㅋㅋ 전 수험생은 아닌지라... ㅠㅠ 암튼 글은 잘 읽고갑니다
아항 그러시군요 ㅎㅎㅎㅎ 봐주셔서 감사해용~~~~ ㅎㅎㅎ
하..이거 3월모고에서 식하나로 합쳐서 계산하려니까 계속안되서
결국 10분만에 그냥 식 따로놓고 주어진숫자 대입해서 풀어보니 나오든데..ㅠㅠ 왜그런거지..
식을 하나로 합치다가 계산이 꼬인거 아닐까요? ㅠㅠㅠ
다음 모의때도 귀납 나올테니 저 방법으로 연습하구 시험봐용!!! ㅎ ㅎ
이과 수학 가형도 적용되나요?
이과수학 가형 고2학년까지만 나오구여 ㅎㅎ
수학적 귀납법은 수2과목이라,,, 문과수학 범위에 해당합니다
이과는 미적2확통 기벡이니깐여... ㅎㅎㅎ
1번은 알겠는데요
2번-> 맨위로 올라가서 일반항 확인하기
이게 무슨뜻인가요?
1번방법으로 안되는데, 맨위로 올라가서 일반항을 확인하면 무슨효과가 있나요?
(제가 제일 못하는 유형이에요 ㅠㅠ )
아 그리고 올해부터는, 그러니깐 작년까지는 저런 빈칸문제가 계속 점화식 일반항 구하는거였잖아요( 축차대입해서 구하기)
근데 올해는 그냥 귀납만 하면 되는건가요?
좋은 질문 주셧네용!!
작년까지 점화식으로 빈칸문제가 나오다가 아마 이제 안나올겁니다
개정되서 점화식 일반항 구하는 중요도가 떨어졌거든요
이제 귀납법 빈칸문제 공부하셔야해여!! ㅎㅎㅎㅎ
그리고 2번 맨위로 올라가서 확인하라는 거는 똑같은 형태를 확인하라는 건뎅..
제가 글수정해서 그림을 올려드릴게요..... ㅎㅎㅎㅎㅎㅎ 댓글에 사진첨부가 안되네요 ㅋㅋㅋ
와 ㅠ 정말 친절하시네요!! 감사합니다!!!!
윗 댓글들 관련해서 코멘트 하자면
사실 방법 자체는 정석 대로 푸는 거랑 차이가 없는데 결국 과정을 전부 이해할건지 답을 찾는 데 주목할 지 차이에요
어차피 맨땅에서 끌어내는건 논술급이고 일반적인 상위권은 이해하려고 해도 저 과정 거치면서 이해할테니 방법적으로는 같을 겁니다
물론 저 과정 전체를 따라가지 못하는 레벨에서 문제는 풀 수 있게 해주니
좋은 팁인 건 맞습니다~
오ㅎㅎㅎ 멘토님이신가봐요!!! 코멘트 넘 감사드려여.. 저보다 말씀 잘하시네요 ㅋㅋㅋ
증명과정 자체를 따라가는 것이 어려운 몇몇이 있어서 제 팁이 도움이 될까해서 올렸어여 ㅎㅎㅎ
넘 제가 하고싶은 말을 해주셨네여 감사해여 ^^
자루형ㅎㅎㅎ
삽자루샘과 같은팁이라니 ㅋㅋㅋ 호호
부등식의 경우에도 쓸 수 있나요?
네!!부등식도 똑같아요!! 그대로하면됩니당ㅎㅎㅎ
오오...... 방금 전까지 귀납법 풀다가 멘탈 나갔는데 여기서 치유받네요 ㅎㅎ
와우 ㅋㅋ 치유되셨다니 ㅋㅋㅋ 다행입니당 ㅋㅋㅋㅋㅋ 스티브잡스님 ㅋㅋ 저방법하면 다풀리니 마니풀어보셔용 ★
조금만 더 상세히 본문 내용을 설명해주실수 있나요?
아 다시 보니 이해가 되네요.
소경님 안녕하세요 이해 잘 되셨나용 ㅋ 저 방법으로 하시면 시간 마니 줄이실 수 있으니 마니 풀어보시고 연습하세용~ ㅋㅋ
답이 12..?
이거 저번에 봣는데 대충 보고 넘어갔다가 오늘 모평에도 나와서 이 글 다시 찾아봣네용ㅋㅋ 저번 시험지 펼쳐들고 보니 16번 옆에 문제풀다 빡쳣는지 ㅅㅂ이라 써져잇네요ㅋㅋ 수학고잔데 이렇게라도 1문제 맞출수 있는 희망 주셔 감사합니당♡♡
ㅋㅋㅋ 저번에 ㅅㅂ,,, ㅋㅋㅋ 고생하셨군요 답 12맞아요!! ㅎㅎㅎ 오늘도 귀납법 또나왔죠?? 저방법대로 했으면 맞았을껀데 ㅋㅋ ㅠㅠㅠ 희망이 되었다니 제가 다 고맙네영 ♡♡ 다음에 시험에 또나올꺼여요... 완전 마스터해노세요 ! 이거는 맞출수있는 4점이에요 ㅎㅎㅎ
제가 씨리얼 기출문제집으로 귀납법 문제를 쭉 풀고잌ㄱ는데 이 방법으로 안풀리는 문제가 훨씬 많은거 같아요 ㅜㅠㅠ 선생님이 틀리셨을리는 없구 제가 이용을 잘 못하는거 같은데 엌덕하죠?? ㅜㅜ
그래서 저는 증명 쭉 따라가는 방식으로 풀었엉욘 ㅜㅜ
귀납법 문제에 칼럼링크타고왔네요ㅜㅠ 이제야 알다니 금손 더럽♡