(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://orbi.kr/0008782522
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐 개념중에 동위원소,PH,중화적정,기체추론,허블법칙,세차운동,반감기,엘니뇨 보다 어려운거 있음? 1
ㅇㅇ? 동사 세사 한지 세지 사문 중에
-
올해 수능까지 포함된거 12월 말 쯤 나오려나요?
-
연대 어문에서 한양대 전컴으로 옮기는거 어떻게 생각하시나요?? 이번에 삼반수했는데...
-
밍나 오하요 3
-
패스가 있어서 그냥 단어만 외울까 하다가 들어볼려는데 독해강좌 하나 듣는다면...
-
유형부터 확실하게 하고가려고 하는데 쏀 틀리는게 없을때까지 반복해야하는건가요?
-
고속 언매 67+17, 미적 74+18 표점 얼마줌? 1
새로 업뎃된 버전으로 제발... 궁금해 미치겠다
-
이거 실채점되면 많이 떨어질려나요? 어떤 변수가 있을지 감이 안잡혀서...ㅠㅠ
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
수능치느라 고생하셨고, 남은 입시도 파이팅하세여
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 저래놓고 재수때까지 물리 안 버린 게 레전드 저때...
-
1. 지방의대생이 인서울 나올 성적되면 무조건 인서울 쓸것임 2. 애매하게 나왔어도...
-
하
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대 새학기 수강신청 A to Z [심화편]] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
아가 기상 7
피곤해
-
텔그, 고속, 대학교에서 공개하는 입결 컷 중 어떤걸 봐야 정확하나요?? 그리고...
-
수리논술이 슬슬 끝나가는 이 시기 저는 갑작스럽게 세상의 쓴맛을 보게되었습니다...
-
근데 등급컷 올려놓고 원서 못 쓰는 반수생이 얼마나될까 6
진지한 궁금증
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대학교 밥집리스트] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
분명 수능 끝나면 책도 많이 읽고 운동도 하려 했는데 6
걍 다 귀찮다
-
성균관대 합격생을 위한 노크선배 꿀팁 [대계열제 신입생 수강신청 꿀팁] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
이럴 때 닫는 괄호는 그냥 다음 줄로 넘기면 되나요? 그리고 마침표 찍고 큰따옴표...
-
근데 이대는 좀 멀음
-
사실 백분위에 5
+1씩 해도 되지않을까 내 위에 있는 메디컬 반수생들 중에 복학할사람들이...
-
락스 1
벌컥 벌컥...ㅆㅂ
-
어이가 없네 ㅋㅋㅋ 사건의 전말:...
-
올해 수능 본 현역이고 고2 모의수능 봤을 때(수능공부 거의x)는 국수영화생1...
-
건국대 합격생을 위한 노크선배 꿀팁 [신입생 행사 시 올바른 참여 방법, 새내기로서의 자세] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
문과고 2-2 기말까지 총 내신 4.0x 나옴 모고는 그냥 노베라 ㅠㅠ...
-
영면에 들고 싶구나 10
잠을 너무 조금 잔듯
-
항상 최악의 풀이로 풀고 있는다는 생각 땜에 괴로움..... 쌤 풀이는 딸깍하면...
-
가천대 합격생을 위한 노크선배 꿀팁 [신입생들에게 무조건 필요한 주거 꿀팁] 2
대학커뮤니티 노크에서 선발한 가천대 선배가 오르비에 있는 예비가천대학생들을 돕기...
-
이제 일어났다
-
엄 3
이번에 한과목 절은 주위 의대사람들 그냥 의대 합격증 받겠다고 쓴다는데 뭐노 진짜 정시의대 ㅈ되겠노
-
gs 누백 질문 0
24년도 시립대 경영 gs 70% 컷 자연계 기준 9.8 인문계 기준 2.2 인데...
-
국어 이승모 수학 이정환 영어 이명학 탐구는 아직 안 정했대
-
큐브 3
질문 올리는 애들 어떻게 하나같이 뒤지게 못하는거임?
-
고기가 아니라 내 살을 2번이나 깨물어서 지금 빵꾸나서 넘 아픔 ㅠㅠ
-
중앙의 경북의 경북치
-
골라줘오 ㅠ
-
최적쌤 조교 0
이번 수능 44점인데 불합이겟죠?..ㅜㅠ 너무하고싶은데
-
쿧쿧
-
수학 거의 노베이스인 군수생입니다. 평일 수학에 2시간+@, 주말 최대 5시간 투자...
-
그림 평가좀 12
자화상임
-
3~6개월 시간 협의 된다길래 방학 시즌이라 2월까지 할려고 동네 학원 보조...
-
탐구 변환표준점수는 임의로 부여하나요? 공식이 있나요? 0
과탐과 탐구를 별개로 하든, 공통으로 묶든 탐구과목의 변환표준점수는학교마다 살짝...
-
휴게소들릴건데아침메뉴추천촘
-
중앙의논술 2
출결보는거 맞죠? 무단결석이 수십개인데 gg치는게 맞겠죠?
-
기다림의 시간은 너무 힘들어요 수능 성적표든 수시 결과든
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ