이과황분들 도와주세용
게시글 주소: https://orbi.kr/0009536239

A에서 내린 수선의발이랑
D에서 내린 수선의발이랑
이은 선분이 어떻게 BC의 중점 M을 지나가나요? ㅠㅠ
자르면 대칭이라고 하는데 정확히 이해가 안가서 그러는데
혹시 자세히 설명 해주실분 계신가요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
약대 친구한테 야 자판기 ㅋㅋ 하면 ㅇㅇ 맞음~ 이러고 한의대 애들도 한무당이라...
-
학교에서 0
애들이랑 노니까 멘탈 복구됨 오늘부터 다시 기출하고 존나달릴게 ㅇㅇ
-
생명이란 참 신기해 살아있다는 감각은 왜 유한한 걸까
-
반듯하게 나 있는 거 하나랑 기울어진 매복 하나 뺐는데 마취 거의 풀렸는데도 별로 안 아프네
-
많은 질문 바랍니다
-
진심풀기싫음 ㅋㅋ
-
분명 2월까지 수특 한번 다 훑는게 내 처음 목표였는데…. 이러다가 수능날까지...
-
비오는날은 10
너무 우울해요 날씨의 요정이라 기온 습도 영향따라 컨디션 천차만별임,,이런날은...
-
비올때 4
창밖보면서 공부하는게 조아요
-
김진아 하지원 최홍라 정설아
-
진짜 개어렵네 스발 으헝헝헝헝 다시 킥오프하러 갈래~~
-
재수생 5모 84맞았는데 시발점 대수 3분의2정도 덜들었는데 마저듣는거 좀 오반가요? 걍 뉴런갈까요
-
사실 독재학원에서 토욜에 다같이 보는데 그날 가족행사 있어서 오전에 학원 못가고...
-
비오면비와서공부하기싫어날씨좋으면날씨좋아서공부하기싫어배고프면배고파서공부안돼배부르면배좀꺼지면공부해야지 26
공부가 원래 그렇다
-
드릴6은 두세문제 빼고 다 맞추는편ㅇㅇ 샤인미?
-
음 그게 맞아 너무 화창해도 안되고 비가 와도 안되며 더우면 안되고 추우면 안되며...
-
졸려 2
공부 안하고싶어
-
지락실 밀림 3
저번편도반밖에못봤는데 벌써금요일임
-
월급 들어왔다 2
45만원 히히
-
이번 5모로 국어 5등급,영어 3나오던게 4나왔습니다.. 그래서 공부 커리를 좀...
-
이제 자주 오면 과외 나가기 너무 귀찮아질거 같은데 크아아앙ㄱ
-
침대에 누워서 유튜브나 보고 싶다
-
너무 피곤하다 0
하암
-
3,4등급은 경쟁률 100대1이 되어도 쉬움. 이건 이견 여지가 없음. 다만 함정이...
-
다시 서울가는중 2
드디어 집에간당~~
-
부산대 국교간다 수능공부 접는다 ㅋㅋ
-
왜인지 그냥 능지 떡상해서 28 29번은 걍 푸는듯
-
해보신 분 후기나 팁 좀 주실 분 없나요..? 과목은 영어에욤 고딩만 해봐서 중등은...
-
2등급 목표 N제랍시고 어려운(?) 3점 쉬운 4점만 있는 n제….. 기출과 쎈이...
-
늘려서 푸는건 이해했는데 a,b,c구한다음에도 이용해서 활용할 방법 있나요
-
왜사람이없는교 4
ㅠㅠ
-
진짜 약코가 아니라 의치랑 묶어서 의치한 이러는게 체가 말도안되는 수준인 현실임...
-
김진아 하지원 최홍라 정설아
-
우웅
-
90점 (빈칸3틀)
-
아님
-
안녕하세요 지방자사고에서 수시(학종)으로 인서울공대를 합격해서 다니다가 올해 1년...
-
3450대 애국심도 있겠지만 진짜 스포츠선수 하나가 대한민국 전 국민을 자극하는구나
-
작수기준 화확생사 44333 뭐 이정도 받으면 지방 교대 뚤리는거 같은데 저...
-
. . . 2
. . .
-
심-멘이 교재 배송해 줌 이벤트 곧 종료!!! 4월 한 달 무료였는데...
-
1번이 왜 답인지 모르겠어요. 저는 5번이 여자가라고 했다는 이유만으로 여성 전체의...
-
국어핑쨔앙~ 14
하잇!! 나니가스키이~♡ 쵸코민트 요리모 아 나 타♡
-
나만 어려어? 3점짜리도 막힘 ㅠㅠㅠㅠㅠㅠ첨하는거긴한데 그래도 ㅠㅠ
-
맨유vs토트넘 7
누가 우승할 것 같음?
-
수학 미적 100맞으려면 강기원이 딥인가요? N제 여러권 사서 열심히 풀어도 강기원...
-
이거 보고 있니?
-
어버이날 다들 챙기심? 11
난 아무것도 안했는데.. 우리집 생일도 아무도 안챙겨서 아무 기념일도 없는데 뭔가 다들 하는거같네
-
내스타일은 아니라 사귀진 않겠지만 갸이쁜건 부정할수없네
-
에린 에린 에린 에린
A에서 선분 BC에 수선을 긋고 점D에서 마찬가지로 선분 BC에 수선을 그으면 정확히 중점에서 만납니다
그정도 보조선이면 직관적으로 바로 오실겁니다
안오신다면 위에 그린 보조선을 사용해 삼수선정리를 이용한 작도를 하시면 바로 보이실겁니다
오 옵니다!!
사실 더 팁을 드리자면 평면ADH는 저거를 정확히 반띵하니까 ABD랑 ADC이루는 각 찾고 절반하시면 됩니다
세타 말씀하시는건가여!?
잘 생각해보시면
대칭인것은 이제 이해하셨을것이니까
정확히 대칭의 중심을 기준으로 각도가 갈리니까요
반띵만 해주시면 됩니다
아 D에서 내린 수선의 발이 수직 이등분선이니까 각도 이등분 해줘서 그런가여!?
네 정확히 각도도 반띵해주죠
오오옹!! 역시 갓에피... 이과똥은 똥송똥송하고 웁니다 8_8
감사합니다 !
A의 수선의 발을 A'이라고 해보죠. 선분 BC의 중점을 M이라고 두면 AM과 BC가 수직이고, AA'은 평면에 내린 수선의 발이므로 삼수선의 정리에 따라 A'M은 BC와 수직입니다.
옹 그러네용 감사합니다!
ABC는 정삼각형이므로 A에서 BCD와의 교선인 BC에 수선을 내리면 중심에 감
BCD는 이등변삼각형이므로 ~ 중심에 감
평면 완성
각각 삼각형 삼수선으로 하는거 인가요?
아 질문을 잘못봤네요 어쨌든 삼수선을 쓰긴 쓰게 됨
넹 이해됬어요! 감사해용
삼각형 abc가 정삼각형이라 a에서 bc로의 수선이 m으로 떨어지고 삼각형 bcd도 직각이등변이라 d의 수선이 m으로 떨어지죠 그리고 m에서 다시 bc에 수직이되게 선을 그으면 삼수선정ㅇ리로 a와 d의 평면으로의 수선이 m을 지나가는 직선위에 떨어집니다
열심히적었는데 꼴지네 ㅠ
음 그러면 H랑 A에서 떨어뜨린 수선의발을 H'이라 했을때
AD가 선분으로 되어있으니까 수선의 발을 떨어뜨린 점들을 이은 선분도 직선이 되고 MH가 BC에 수직이고
DH'이 BC에 수직이니까 HH'이 M을 지난다 인가요!?
BC의 중점을 M이라고 합시다.
삼각형 ABC가 정삼각형이므로 선분 AM과 선분 BC는 수직입니다.
또 삼각형 DBC가 이등변삼각형이므로 선분 DM과 선분 BC는 수직입니다.
점 A에서 평면 알파에 내린 수선의 발을 A'
점 D에서 평면 알파에 내린 수선의 발을 D'이라고 하면
삼수선의 정리에 의해
선분 A'M과 선분 BC가 수직이고
선분 D'M과 선분 BC가 수직입니다.
선분 A'M과 선분 D'M은 한 직선 A'D'위에 있으므로 직선 A'D'은 선분 BC의 중점 M을 지납니다.
윗분들 말씀대로 하니까 이해가 갔는데 이제 세타 구하는게 문제네요 ㅠㅠ
이거 어디서 본것같은데 어디문제예요??
해모파 0회영!
답 80인가요??
제발 맞는지아닌지만알려즈세요ㅠㅠ알고싶어요
저는 180 나왔는뎅... ㅠ 제가 틀릴듯 ㅠ
답은 아직 안봤어요!
이따 보시면 알려주시면 감사하겠습니다
답 하건에 있어여 ㅠㅠ 내일 저녀겡 가는데 ㅠ 죄송 ㅠ
tan세타/2가 저는 루트3 나왔는뎅 ㅠ
전 루트3분의 2나왔는데ㅠ
저는 라비아스님 말대로 풀어봤는뎅 ㅜㅜ
흠... 저위에 라비아스님말에 양쪽날개가 이루는각을 반띵하면 구하는각이 나온다는게 근거가있나요?
다른각이나올수있지않을까요
답뭐였나요? 너무뒷북인가..?