이과황분들 도와주세용
게시글 주소: https://orbi.kr/0009536239

A에서 내린 수선의발이랑
D에서 내린 수선의발이랑
이은 선분이 어떻게 BC의 중점 M을 지나가나요? ㅠㅠ
자르면 대칭이라고 하는데 정확히 이해가 안가서 그러는데
혹시 자세히 설명 해주실분 계신가요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://shor.kr/4j3
-
그냥 안들어오면 되는거 아는데 그냥 일케 올려야 최대한 안들어올것 같아서요 ㅇㅇ.....
-
https://shor.kr/4j3
-
양승진 커리상 입문 N제 들어가야하는데
-
[성현국어] EBS 연계 『기연 모의고사』 1회차 배포 2
반갑습니다, 국어를 가르치고 있는 안성현입니다. 3월 모의평가가 끝나고,이제...
-
작년꺼 하나 골라서 다 풀려는데 뭐가 더 좋음여? 이유도 좀...
-
고2 인데 올해 3월에 학교에서 169.0 나와서 1년 동안 키 그대로이길래 성장판...
-
자 0
지마
-
저요
-
내신 5점대 애들이 정시한다고 비웃음 그게 너무 화남
-
https://shor.kr/4j3
-
오노추해준다 0
https://youtu.be/q-H7qVgFwrE?feature=shared 듣꼬판단해.
-
언매 1틀이나 다 맞으셨던 분들 얼마나 공부하셨나요?
-
스카 가 말아 1
존나 멀어 학교를 안 가면 되긴 해
-
수잘싶 1
수능 잘 보고 싶다
-
주무실게 1
듀듀 잘자시긔
-
어캄
-
https://shor.kr/4j3
-
추천 0
샴푸-시원한 바나나향임 바디워시-쿨피스 복숭아향임 둘다 가성비 개지림 샴푸->쿠팡...
-
얼버잠 4
장렬히 전사
-
반갑습니다 9
좋은 새벽입니다
-
ㅈ댓는데 어카쥐
-
혹시 지피티로 글내용 복사해서 질문하고 사진 보내주실분 있나요 4
orbi.kr##li:has(a.fluid-link[href*="%EB%8B%A8%E...
-
펜 없이 풀기 2
-
봉인지 떼면 흔적 남는다며 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ
-
야!!!!!! 14
-
삼각함수 활용만 쏙 빼서 깔끔하게 풀어야겟다14문제네
-
안보이네요 1
-
단어외우기빼고 ㅠㅠ 안전2등급 iwant!!!
-
웹르비에서 제목에 특정 단어가 포함된 글 안 보는 법 1
https://orbi.kr/00072627163 적용법은 위 링크 글 참고...
-
걍 오늘 시작한걸로 치겟습니다 왜냐면 아직 노베기 때문입니다
-
윤공주 저 사람 7
차단하고 싶은데 모바일에선 차단 못 해요?
-
https://shor.kr/4j3
-
진짜다쐬버리고싶음 우리나라가 총기소지안되는이유가잇음 만약 됏으면 난 테러리스트가 되었겠지
-
우효
-
. 17
.
-
옷도존내사고화장도존냐하고다녀야지..........ㅠㅠ
-
개 때리고 싶음
-
난 억울해 0
진짜 50분 넘게 누워있었는데 못잤어
-
ㅡㅡ
-
아무것도 모르는 찐 노베 과외학생을 위해 만들어 봤어요 잠은 못잤지만..ㅜㅜ 한컴 무료체험 좋군요
-
겨우 자러갓더니 4시간 자니까 깨네 씨바꺼
-
쳐 자야하나 3
-
전기나감 6
ㅅㅂ뭐지
-
원과목 기준 회차당 얼마정도가 적당한가요?
-
차단안했어요
-
사람 많이 뽑는게 장땡인가? 아니면 상대적으로 수준이 좀 내려가는(상의학과대비)...
-
비 많이오네 1
번쩍 하더니 천둥 침
A에서 선분 BC에 수선을 긋고 점D에서 마찬가지로 선분 BC에 수선을 그으면 정확히 중점에서 만납니다
그정도 보조선이면 직관적으로 바로 오실겁니다
안오신다면 위에 그린 보조선을 사용해 삼수선정리를 이용한 작도를 하시면 바로 보이실겁니다
오 옵니다!!
사실 더 팁을 드리자면 평면ADH는 저거를 정확히 반띵하니까 ABD랑 ADC이루는 각 찾고 절반하시면 됩니다
세타 말씀하시는건가여!?
잘 생각해보시면
대칭인것은 이제 이해하셨을것이니까
정확히 대칭의 중심을 기준으로 각도가 갈리니까요
반띵만 해주시면 됩니다
아 D에서 내린 수선의 발이 수직 이등분선이니까 각도 이등분 해줘서 그런가여!?
네 정확히 각도도 반띵해주죠
오오옹!! 역시 갓에피... 이과똥은 똥송똥송하고 웁니다 8_8
감사합니다 !
A의 수선의 발을 A'이라고 해보죠. 선분 BC의 중점을 M이라고 두면 AM과 BC가 수직이고, AA'은 평면에 내린 수선의 발이므로 삼수선의 정리에 따라 A'M은 BC와 수직입니다.
옹 그러네용 감사합니다!
ABC는 정삼각형이므로 A에서 BCD와의 교선인 BC에 수선을 내리면 중심에 감
BCD는 이등변삼각형이므로 ~ 중심에 감
평면 완성
각각 삼각형 삼수선으로 하는거 인가요?
아 질문을 잘못봤네요 어쨌든 삼수선을 쓰긴 쓰게 됨
넹 이해됬어요! 감사해용
삼각형 abc가 정삼각형이라 a에서 bc로의 수선이 m으로 떨어지고 삼각형 bcd도 직각이등변이라 d의 수선이 m으로 떨어지죠 그리고 m에서 다시 bc에 수직이되게 선을 그으면 삼수선정ㅇ리로 a와 d의 평면으로의 수선이 m을 지나가는 직선위에 떨어집니다
열심히적었는데 꼴지네 ㅠ
음 그러면 H랑 A에서 떨어뜨린 수선의발을 H'이라 했을때
AD가 선분으로 되어있으니까 수선의 발을 떨어뜨린 점들을 이은 선분도 직선이 되고 MH가 BC에 수직이고
DH'이 BC에 수직이니까 HH'이 M을 지난다 인가요!?
BC의 중점을 M이라고 합시다.
삼각형 ABC가 정삼각형이므로 선분 AM과 선분 BC는 수직입니다.
또 삼각형 DBC가 이등변삼각형이므로 선분 DM과 선분 BC는 수직입니다.
점 A에서 평면 알파에 내린 수선의 발을 A'
점 D에서 평면 알파에 내린 수선의 발을 D'이라고 하면
삼수선의 정리에 의해
선분 A'M과 선분 BC가 수직이고
선분 D'M과 선분 BC가 수직입니다.
선분 A'M과 선분 D'M은 한 직선 A'D'위에 있으므로 직선 A'D'은 선분 BC의 중점 M을 지납니다.
윗분들 말씀대로 하니까 이해가 갔는데 이제 세타 구하는게 문제네요 ㅠㅠ
이거 어디서 본것같은데 어디문제예요??
해모파 0회영!
답 80인가요??
제발 맞는지아닌지만알려즈세요ㅠㅠ알고싶어요
저는 180 나왔는뎅... ㅠ 제가 틀릴듯 ㅠ
답은 아직 안봤어요!
이따 보시면 알려주시면 감사하겠습니다
답 하건에 있어여 ㅠㅠ 내일 저녀겡 가는데 ㅠ 죄송 ㅠ
tan세타/2가 저는 루트3 나왔는뎅 ㅠ
전 루트3분의 2나왔는데ㅠ
저는 라비아스님 말대로 풀어봤는뎅 ㅜㅜ
흠... 저위에 라비아스님말에 양쪽날개가 이루는각을 반띵하면 구하는각이 나온다는게 근거가있나요?
다른각이나올수있지않을까요
답뭐였나요? 너무뒷북인가..?