sinx가 1이 넘어갈수있나요?
게시글 주소: https://orbi.kr/0009238798
문제가 이상해서 그런데 sinx에서 x자리에 어떤것이 오더라도 1이 안넘어가는게 맞죠?
문제오류면 정정신청하려고요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
게시글 주소: https://orbi.kr/0009238798
문제가 이상해서 그런데 sinx에서 x자리에 어떤것이 오더라도 1이 안넘어가는게 맞죠?
문제오류면 정정신청하려고요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
당연한걸
당연한보이
신고
ㅠㅠ
탱크보이
신고드렸습니다.
포로리야ㅠㅠ
ebs파이널인데 이럴줄 알앗으면 풀지말걸 ㅠㅠ 문제도 29번 30번이 앞에거보다 더 쉬워요
쌩 사인은 -1≤X≤1 아님?
그르게요 이게 ebs의 정체입니다
문제 올려주세여
안넘어요
허수가 들어가면 절댓값이 1보다 클 수야 있는데 실수 범위에선 안넘죠 ㅎ
오 이거 신박한 얘기인데 허수가 들어가면 어떻게 되나요?
sin(iz) = i sinh(z)가 성립하는 데, sinh(x) = (e^x-e^(-x))/2 이렇게 정의돼요 ㅎ
음 모르겠당 ㅈ살
뭐 굳이 아실 필요야... 3학년 때 복소 듣다보면 알게 됩니다....ㅎ 코시를 죽이고 싶어지는 건 덤...
오....첨들어봄
복소평면ㅇㅇ
글쿤여...저 대학들어가고 수학을 놔서 ㅎㅎ...배울일도 없고 ㅠㅠ
복소 삼각방정식 이야기가 나와서 덧붙이면
e^ix = cos x + i sin x 가 성립한다는걸 들어보셨다는 가정하에
e^-ix = cos x - i sin x 가 성립하고, 두 식을 뺀 후 2i를 나누면
sin x = e^ix - e^-ix / 2i가 나옵니다.
sin x= 3으로 예를 들어보면 이 해는 결국 e^ix - e^-ix / 2i = 3이라는 (지수)방정식의 해를 구하는 과정과 같습니다.
e^ix가 근의공식으로 도출될텐데 양변에 ln을 취하면 ix = ~~~~가 나오고 양변을 i로 나눠주면 해가 나옵니다
낙원씨 덕분에 고생이 많으십니다....ㅠ