순열과조합 확통 공부방향
게시글 주소: https://orbi.kr/0008908469
12를진동하는 3월2 4월1 6월2 7월1 고3현역입니다
순열과조합 확통 공부법에 대해 질문드립니다
기출은 자이 한 5번은 본거같은데.. 왜 이렇게 확통을 못할까요 ㅜㅜ
인강을들을까요? 답을주세요..ㅠㅠ
신승범 확통이 좋다는데 ..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
종강안하나 0
할때됐는데
-
연계 지금 시작해서 낯선 주제 지문이 많아서 너무 많이 틀림 주제도 어렵고 근데...
-
80프로 회복 완뇨
-
안녕하세요 한방국어 조은우입니다. 자료 공유합니다. 어휘도 안되는 친구들이...
-
내가 이해한 지문 내용이랑 해설이랑 논리가 달라서 질문했더니 말은 해설이 틀렸다는...
-
국어를 못하고 수학을 잘하는데 불리한가요???
-
60대 부부 일터 나간 오전 10시, 29살 아들은 방에서 나와 TV 켠다 4
2월 경제활동인구 통계 55~64세 女 61.5%가 일해 10년전 52%보다 확...
-
갑자기 삼도극을 빼질않나 과탐 죽이지않나 문학으로 승부보려하지를 않나 킬러배제같은 x소리를 하질않나
-
고1 정도면 이해할 수 있는 난이도인가요?
-
외야되...
-
얼굴뿐만 아니라 인성도 문제 있음
-
한완수 시작 0
기대된다 이걸 끝내면 나도 기하 고수가?
-
누가 또 기만런데
-
제가 논술을 아예 몰라서 그런데요.. 지원하는 과에 따라 지문과 문제가 다른 건가요??
-
집안에 고양이가 엄청 많았는데 무슨 고양이 요양원처럼 대부분이 아픈 고양이었음.....
-
베이스 소리가 날 자극해
-
아니면 그냥 정석적인 풀이 써져있나요??
-
군수 밸런스게임 2
04년생 지금 대학교 1학년이고 26,27수능만 본다는 가정하에 1. 25.8월...
-
피램 좋나요? 5
ㅈㄱㄴ
-
아....
-
이게 그냥 게임이었다면 GG치고 나갔을듯
-
현역 수학 0
현역 고3입니다. 작수 92(28, 30틀)이고, 평소에 수능이나 모의고사 보면...
-
잠을 깨긴 깨야하는데 이거 어카지 ㅅㅂ
-
sol 1. (나), (다) 조건에서부터 함수 f(x)의 증감 파악이 중요함을 알...
-
또 졋어요?? 13
보니까 또 가르나초 당신입니까..
-
얼버기 0
ㅍㅣ곤하고 뉸 아파
-
출근도장 8
쾅쾅쾅
-
진짜모름……
-
ㅎㅇ 2
-
생지 -> 생명사문 할 것 같은데 w관 가겠죠?? 그리고 관 바뀌어도 반은 똑같나요??
-
센츄달고싶당 0
6모는29꼭맞혀서센츄달아야징…… 3모수학고1범위라고유기한거지금생각해보니까너무아까움……
-
작년에 생지했는데 지구가 6모 5 9모 1 수능 4떴고 올해 3모 3떴는데 빨리 런하는게 답이겠죠?
-
문과 시절에 한지 사문 응시했었고 15수능 50 50 / 22수능 50 48...
-
사실안좋음.
-
곧 도태될 듯
-
26㐃능 ➙보늖 Lㅓ! 당장 ✇오✻➙☉르ㅂ1 엹품ㅌㅏ✯ㅇㅔ 오ㅏㄹㅏ✃...
-
달라진당!!!
-
오늘아침 성과 ㅁㅌㅊ 14
시험 며칠 안남았다...
-
자 지축을 박차고 자 표효하라 그대
-
어르버르기 4
버르어르기
-
얼버기 20
씻고 등장
-
위장이 뒤틀리는 느낌 작년까지만 해도 몸이 튼튼했었는데 나도 나이를 먹었나봐
-
일반고 내신 1학년 내신 3.6 고2입니다. 생기부는 평범한 일반고 생기부로, 분량...
-
대학 붙었는데도 학교 안 가고 그냥 아무것도 안 하니까 인생이 망가져가고 있는 거...
-
인증메타였어? 4
그런건 일찍일찍 시작해야지
-
고졸이나 전문대졸에 대해서 엄청 안좋게봄 이 사이트가 나는 그냥 별 생각 없름
-
도망쳐
-
얼버기 0
부지런행
여러 선생님 들어본 경험으로는 신승범 확통은 호불호가 극명하게 갈림
아..진ㅉ요?? 불호들은 왜 싫대요..?ㅠㅠ
맛보기를 들어보세요~ 전 몇년 전에 들은거긴 한데 경우의 수를 구하는데 생각의 방향?이 좀 다른 선생님들과 달라서 저는 안들었었어요
저는 확통같은경우 전혀 접근하지 못하는 문제는 없다고봐요
주로 조건을 놓치거나 실수를 해서 틀리는데 그렇기 때문에 확통을 잘하는 방법은 그냥 많이 풀어보고 많이틀려보는 수밖에 없다고 생각해요
어떻게보면 투자대비 효율이 낮다고 할까요
순열과 조합이 어렵게 느껴지는 대부분의 경우는 합의 법칙과 곱의 법칙에 대한 이해 다시말해 경우의수 구하는 과정에서 언제 더할지 언제 곱할지에 대한 명확한 구분이 되지 않기 때문이라고 볼 수 있어요. 사실 현역시절 가장 힘들었던 부분이기도 하구요. 이에 대해 간단히 설명하면 합의 법칙의 경우일반적으로 우리가 수능에서 접하는 문제들은 더하는 것 끼리 '배타성'을 가져야한다는 원칙과 (2의배수 3의배수 문제같은 경우 논외) 곱의 법칙의 경우 문제에서 요구하는 하나의 사건이 만들어지지 않은 경우에는 서로 곱한다는 원칙을 잊지 마셨으면 해요. 다만 곱의 법칙 같은 경우에는 (특히 순열논리) 앞서 고려했던 부분에 대해서는 다음번에 고려해선 안된다는 점에 유의하시면 좋을듯해요. 혹시 이해가 안가시거나 궁금한점 있으시면 쪽지 보내주세요
김성은확통 갑