(안녕맨)<토요 수학칼럼 - 외워두면 좋은 면적 공식>
게시글 주소: https://orbi.kr/0008759526







1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
cf) 8월 1일 부터 대치동 오르비 현강 개강합니다
끝장인강 총정리 & 수능대비 기출시험지 10회 8주 커리인데
제 현강의 특징은 필기가 전혀 필요 없습니다 모든 필기된 교재는 미리 제공합니다
http://class.orbi.kr/group/85/ 참고하세요
(첫 강좌는 무료입니다 시간되시는분들 오셔서 강의 들어보시고 등록 판단 하시면 됩니다
그리고 그날 오시는분 한명 추첨해서 컬쳐랜드 문화 상품권 1만원권 선물 드릴게요 ㅎ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등급만 박제해놓고 학력저하니 원서 성공이니 핵빵이니 하는게 가장 어리석은거긴 함...
-
너무행복해요 2
제가 하고싶은 걸 드디어 할 수 있게 됐어요
-
이건뭐지ㅋㅋ 3
대체뭐하는분일까 문과면서생2는어째서
-
너무 어려운건 말고…
-
이신혁t 모고 0
이신혁t 라이브 중인데 on 모의고사 1회하고 3회 없이 2회만 온거임?
-
1학년 때부터 꾸준히 화학으로 밀어왔음 학종은 대부분 화학 관련 과로 쓸 것 같아요...
-
시키짱~ 하이~ 2
시키짱같은 여친 만나고싶다 약간 조유리+리즈 느낌인데 기엽네
-
CC 커플들 데이트 장소로 딱이네요~^^
-
생윤러들 0
선택 한 번씩만 하고 가주셔요
-
진짜 대학가면 0
하고싶은거 많음
-
사문 생윤으로 사탐런 했는데. 생윤 너무 어려운거 같음요.. 근데 버리기는 좀...
-
진짜 되긴함
-
앙버터 이후로 이름값하는 애는 처음 봤어요
-
최대 5만원대 키보드소리 안큰거 ㄱㄱ 게이밍이면 좋을듯
-
아 다욧 안할래 0
뱃살 좀 나온다고 그거 볼 일 있겠나 어차피 1키로도 안 찔 건데 별일 업ㄹ겠지
-
현재 재수생이고 이번 3모 공통 2틀 (14,22) 선택 5틀...
-
ㅇㅈ 0
ㅢㅏ
-
어케할까요
-
설경제 22221 합격 두고 입시가 쉬워졌네 입시를 모르네 싸우네... 내가볼땐 둘다 똑같은디
-
멀쩡한 정신에 멀쩡치 못한 삶 선넘질도 ㄱㄴ
-
근데 원래 3
아무것도 안하고 쉬다가 갑자기 일 나가면 원래 힘든거 맞지? 일주일 동안 3~4시간...
-
안녕하십니까..
-
오늘 공부한거 2
제로
-
제가 시대인재에서 변춘수 선생님의 강의를 처음부터 수강하고있었는데 이번 내신휴강때...
-
일이나 아니면 개인적인 취미라던가 해서 어떻게든 바쁘면 자연스럽게 연애고 외롭다고...
-
침대 가고싶ㄷ 1
일류 대학은 침대 그 다음은 와플대
-
지거국에서 무휴반으로 고려대갔고 지금은 별 생각없지만 메디컬 목표로 무휴반할수도 있을거같아요
-
인생망함 0
누가 좀 구해줘
-
1년 6개월이 벌써
-
VS 놀이 8
요즘은 어떨란가
-
미적과외 잡음 문제는 내가 다 까먹었다는거임
-
난 사실 0
09년생임. 조졸하고 입학함 반박시 님말이 맞음
-
열품타 같이하실분 모십니다. 제가 공부안하면 스벅커피쏩니다 0
안녕하세요 시골에 사는 관계로 근처에 재종반이나 독재학원이 근처에 없어서 자취방을...
-
고려대보단 와플대학임 12
반박 안 받을래
-
왜 기하는 3
26번부터 정답률이 반토막이지
-
있었으면 좋겠다
-
ㄹㅇ 몸 갈릴 것 같음 어쩌다보니강경파됨 ㅋ..
-
놀아줘 2
나랑
-
왤케 개을러졌지 4
아이고 아이고 참고 '게으르다' 말고 '개으르다'도 표준어임
-
돈 아끼고 시간 아끼고 솔로가 좋다.....
-
팀플 없는 과는 경제학과로 알고 있는데 교양에서 있을 수도 있다해서요
-
저 진짜 개념 노베부터 시작해서 시발점부터해서 강기본 쎈 수특 개념 문제집 사니까...
-
물1 공부기록 1
방인혁t expert zero 끝! 그리고 오늘 물1 개념 2회독까지 필수본으로...
-
옯비언들아 6
애니 추천해라
-
올?백
-
연세대!!
-
봄되니까 2
다 연애하네 나도..해야지 언젠가는
-
가서 나도 순애할래 나좋아해주는사람만날래
-
촉이 오거나 쎄했던 썰 10
댓글로 풀고 가기
-
??…. 어케함
저거 외울시간에 잠자는게 이득
맞습니다 제목 그대로 필수가 아니라 "알아두면 좋은" 이에요
외우는 거 귀찮으면 이런게 있구나 하고 넘어가시면 되구요
근데 비슷한 부분이 많아서 외우는데 그리 어렵진 안을 거에요 ㅎ
현강에서 지도해보면 분모는 6 12 30 (6의 배수)이고 분자는 3승 4승 5승 순이라
금방 암기를 하더라고요
그리고 실제로 모평에서 나온적이 몇번있어서 알아두면 즉답으로 문제를 푸는경우가 많습니다
문과면 외워둬서 나쁠건없는데요 댓글이너무공격적 ㅋ ㅋ
현t도 챙겨가라하시고
감사합니다
하지만 평가는 주관적인거라 모든 분들의견 다 수렴합니다 ㅎ
그게 강사의 기본 자세구요
현우진 선생님도 저거 말해주시나요?? 빡쌤도 말해주셨던 걸로 기억하는데
수분감기벡 '이과'에서도 챙겨가라하세욥
'알아둬도 그냥그런'
무슨 말을 저런 식으로 하나....사회생활 힘들 듯..
저건 필수적으로 외워야 됨 ㅋㅋㅋㅋㅋ 한석원도 저거 기억해두라고 하고 자주나옴 저건
사회생활 가능하세요?
ㅋㅋ
공부하다보면 외워지는 거지요
당장 이번 7월 나형 30번도 3번 공식이 등장하니까요
좋네요
네 이번 칼럼이 그걸 중점으로 쓴거에요 ㅎ
공식이라는건 자주 나오고 쓰다보니깐 관용적인것을 정리한것이니깐요
저는 수학안하는 학생입니다
그래서 글이 좋은진 안좋은지는 모르겠지만 이런칼럼에 학생이 피해보는 일은 있을것같지는 않아보입니다
작년에 불미스러운일때문에 인식이 안좋으신건 알겠습니다. 저도 너무했다 생각은 들고요
근데 학생을 위해 칼럼쓰는글에 공격적인 댓글 (ㅋ , 믿고거릅니다 , 등등) 올라오고 그러는게 너무 빈번하게보이더군요
그런감정or인식으로 인해 보기싫으시면 거르면 될텐데 굳이 왜 글에 들어와서 그런글을 남기는지 모르겠네요
무슨 싸우고싶어서 안달이난 사람같아보여서
보기싫으면 보지마세요 그냥... 그런감정은 개인적으로 글을써서 표현하던가 칼럼에 댓글로 이게 뭡니까...
ㅋㅋㅋㅋㄹㅇ 애같애요
외우는게 쓸모없다니... 전 a(x-p)^m(x-q)^n 일반화해서 외우고 다니는데... 너무들 하시네요..
일반화까지 ㄷㄷ 일반화하면 뭐에여?
am!n!(p-q)^(m+n+1)/(m+n+1)!
이것말고도 일반화해서 외우면 꿀인게 꽤 있어요... 예를들면 cos합법칙?
cos(c)=cos(a)cos(b) + sin(a)sin(b)cos(r) 이렇게요
일반화는 오바인듯 전 많이쓰다가 자연럽게 외워졌는대
사관학교나 경찰대 문제 풀다보니까 많이 필요해서 그냥 외워버렸어요..
교주님이다
유용한 정보 감사합니다.
좋게 봐주셔서 감사요 ㅎ
저거 정말 개꿀입니다..... 왜 저런걸 거부하시는지... 미적분 할 때 저런거 진짜 개꿀인데
도움이 되셨다니 다행이네요 ㅎ
서울 의대간 형도 예전에 꿀팁이라고 알려줬던 건데 까먹고 잇엇던 마당에 감사합니다!
삼각함수도 넓이 알아두면 편한데...
선생님 좌표에서 평면넓이 구할때 신발끈공식에 대해 어떻게 생각하시나요??
필수죠 솔직히 좌표 알때 신발끈 공식이 최고에요 ㅎ
그거 삼각형만되는거죠?? 원점하나걸친
보통 삼각형에서 많이 쓰죠
특히 원점을 포함하면 (0, 0) , (a, b) , (c, d) 일때 1/2 | ad -bc |라는 공식으로 바로 구할수있어요
원점 아니라도 상관 없고, 임의의 다각형에 대해서도 성립합니다
네 맞습니다 ㅎ 참고로 시계 반대 방향으로 배열하면 항상 양의 값을 갖아서
구지 절대값을 할 필요가 없습니다
헐 그랬군요 무조건원점하나걸치고 삼각형만되는줄알았는데..
이미지세탁 ㄱㅇㄷ
솔직히 경우가 어떻든 학생들이랑 소통할때가 가장 기쁩니다
예전에 개인 카페 운영할때랑 수만휘 멘토에 있을때는 하루에 100개 넘는 댓글을 매일 하고 그랬는데
그때가 가장 행복했었네요 ㅎ ( 지금은 기력이 안됨 ㅠㅠ)
감사합니당
^_^ v
2,3,4공식도 필요한가요?? 1번공식은 알고있는데 234는 한완수에 나올법한 공식같아요
저만 모르고 있었던거는 아니죠??
말 그대로 "알면 좋은" 입니다
필수는 아닙니다
선생님
선생님 칼럼 편히 볼 수 있도록 링크 달아주셔서 너무 감사합니다
이렇게 칼럼 제목을 한꺼번에 보니 너무 좋아요
앞으로도 좋은 칼럼 부탁드립니다
전 선생님 강의 스타일 좋아합니다
실제로 확통 강의 재미있게 보기도 했구요
안녕맨선생님 파이팅 !!!
감사합니다 기분 짱이네요!!!
매번 도움되는 칼럼 올려주셔서 감사합니다 !
굳이 여기와서 시비터는 분들은 사회생활 어찌하실지 궁금하네요
감사합니다
저는 솔직히 다들 조카뻘 되는분들이라 그리 연연하지 않아요
그냥 갖고 노시다가 제 자리에만 놓으면 됩니다 ㅎㅎ