(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://orbi.kr/0008742407

















1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
합성함수 종나 나오네 ㄹㅇ 합성함수의 최대 최소 판단 합성함수의 극값 판단...
-
잠이 안온다.. 2
아
-
닉넴 바꿀까 0
??
-
망플단 0
흠
-
[칼럼]1부 - 비타민K 문제해설 (독서는 결국 ‘정보량 싸움') 0
[소개 및 성적인증] https://orbi.kr/00071877183 [칼럼]1부...
-
얼버기 6
-
ㅇㅇ
-
팔로우버튼에 1
박스가생겼네 위에 내비게이션 바? 도 투명해졌고
-
조까고 밤새는 나
-
크옹
-
살려줘요
-
유나랑 로제같은
-
탈퇴 눌러도 안되네.. 컴터로 해야함요?
-
프리미엄 은테 아다를 가져갈 기회임
-
덕코 털고감 4
선착1
-
5번 빠니까 끝남
-
본 사람?
-
응 너 죽고 나 죽자
-
그냥 독서실 비번아는데 문따고 들어간다 ㅋㅋ
-
지구온라인 종료가 진짜 다가오나
-
머리가 어지러 ㅜㅜ 17
여붕이 아파...
-
돈에 집착하고 일을 하려고 하는 듯 내가 하고 싶은 거를 맘껏 하기에는 돈이 부족함
-
슬프네 열심히 살아봐야지...
-
누가 광역도발 시전해놨네 ㅅㅂ
-
난왜 무물보안해줌 25
ㅠㅠ
-
요새 듣는 랩 6
수퍼비 엠뷸런스 애쉬아일랜드 멜로디, 뭐시기 히어로, 뷰티풀 창모 마에스트로 아이야...
-
왜 위쪽이 투명해졌지
-
요새 자주 듣는데 없음
-
무물보...? 10
몰라 일단 게시물은 써보자
-
창모 이새낀 요새 뭐함
-
배아픈데 7
토할것도같고 ㅈ같네
-
아무리 봐도 an+2인 거 같은데
-
한판도안함
-
.
-
비틱 하나만 할게 15
저번에 논술 재능테스트 강사제외하고 일반인 중에서 유일하게 10점 맞은 놈 나임....
-
교훈 3
잘생긴게 최고다
-
구란줄 알았다 왜 진짜냐?
-
각자만의 이유가잇는것임 20
내가 쟤 사준이유가 잇겟지 그리고 우린 걍 친구임 오프라인에서 만나본적도없고 다...
-
난 뭔가 재수 용기가 안남 주변에 반수하는 사람도 많은데 난 현역 때처럼 살 자신이...
-
좋은 밤 되시구 내일까지 은테 만들죠? 은테에 맞춘 한결 프사나 골라둬야지
-
ㅈㄴ 어색하네 여당이건 야당이건
-
근데그거말하면바로특정돼서말못함.... 말하고싶다
-
내신 2점 초반, 수능 32442 현역 교과로 숙대 왔습니다 추합으로 겨우 붙기도...
-
맞팔구함. 7
은테만 좀 달아보자
-
목표 9
경찰대 가서 설대or동국대 학점교류 가기 실리와 대학라이프를 모두 챙기는 최고의 계획
-
그냥 모르겠다 1
너무힘들다사는게 안겨서울고싶다
-
ハルジオン 2
제가좋아하는노래
-
깎일 것 같은 2번이 만점이고 적분 우당탕 1번을 깎이네 에???
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다