수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://orbi.kr/0008354037



3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
님들근데 딴건몰라도 국어실력이 어느정도이상가도 실력이 늘는다생각함? 0
선지논리도 결국은 상황마다 다르고 그냥 즉흥적으로 주어진 상황에 맞게 판단한다=본질...
-
그냥 농어촌에 대한 건설적인 토론 하면 좋을거 같은데 1
그냥 n수생이라 배배 꼬여서 이해당사자 아니라고 감정배설하며 저주 퍼붙는거 같은...
-
기초개념,기출학습 완료했는데,실전개념 강의를 지금부터 모두 듣긴 부담스러워서 한완수...
-
https://youtube.com/shorts/KnK18jxz0G0?si=IVDVs...
-
섹스 6
잘 잤니
-
어제 어쩌다 보니 피규어를 2개 뽑아버려서 가방공간이 부족해졌네요
-
지금 김동욱 일클 끝내고 취클 들어가야하는데 일클에서 연필통 풀면서 문제 난도가 좀...
-
이 병신은 뭐노 1
촌놈들 봉기운동 ㅋㅋㅋㅋㅋㅋㅋ 진짜 생각하는 꼬라지 부모 머리끄댕이끌고 와서 연소득...
-
쎈 문제도 못푸는 애들이 수두룩한데 대치동 현강에서는 22번 30번급을 한 강의에...
-
6월 4일 맞는거 같음 속보까지 나온거면
-
뭐임? 저거밖에 없음?
-
3일 대선 4일 모고
-
소득분위별 대학 가산점(Max 설대식 5점) 하면 좋겠다
-
왤캐졸려 4
봄이라 그런가 ㅅㅂ
-
항상 하나씩 틀리는데 들어야할까요? 하루 수업에 13만원(라이브)태우는건 좀 아까운...
-
진짜로 감동적이긴 할듯요누가 가르쳤는데 ㅠㅠ눈물이 스르륵 스르륵 ㅠㅠ
-
러셀은 실제 시험장과 너무 다르다
-
선거 때문에 6평 날짜 바뀌면은 6월 3일 이전임? 후임? 2
어떻게 바뀌지
-
생각난 김에 0
공생발생설 지문 다시 기출분석하고 해설 찾다가 재밌는 칼럼 찾음...
-
220628 3
-
ㅋㅋㅋㅋㅋㅋ
-
논술 문외한이어서 진짜 ㅈㅅ 수리논술 생각중인데 최저 높은거로 하면 애들 많이...
-
대선방송 보지 말라는거임?
-
[속보] 조기 대선으로 수능 모의평가 6월 4일로 연기 3
오는 6월 3일 치러지는 조기 대선의 여파로 대학수학능력시험 모의평가가 하루 뒤로...
-
진짜냐구우우웃;;
-
https://m.ytn.co.kr/news_view.php?key=202504081...
-
ㅈㄱㄴ
-
강기본 이런책이 있었나요?
-
3모4떳고 지금 새기분 듣는데 등교하는 날은 강의 듣기 버거워서 강기분 독서에서...
-
저 아이린 닮고 싶어서 맨날 내가 아이린이라고 상상하니까 아이린보다 이뻐진듯ㅋ
-
백날천날 오르비 거주중인 N수 반수생들 떡밥을 학교에 있는 현역이 어떻게 따라감?...
-
여름 아닌가
-
다른 분들 의견도 궁금해서 써봅니다 교육부는 본과 3·4학년생을 중심으로 수업...
-
딱 한 번 깸
-
국어에서 무슨지문 풀었고 뭐배웠고 수학에서 뭘 몰랐고 이런거
-
꼬우면 돈많게 태어나라 ㅋㅋ
-
피드백 해주시나요 고민이 많음 실전
-
어떻게 모든지방 자세한사정까지 다알고 하겠음 객관적인 기준이란게 있을수가있나...
-
물론 사람이 항상 생산적인 일만 해야하는 건 아니긴 해
-
또 전통놀이구나 1
-
돈많다고 공부잘하는게아니라 잘할 사람은 어떻게서든 열심히해서 성적 올리료고 함 이걸...
-
ㅈㄱㄴ
-
개꿀잼이네 학교 푸로구래밍 시간인데 개재밋노
-
본인 사는 곳애서 농어촌 지역으로 다 버리고 이사가서 중고등학교 6년 지내셈 쉽다...
-
청소 너무 싫다
-
세상은 허구한날 수학문제 벅벅 풀고 과탐 숫자퍼즐이나 맞추며 놀고 허구한날...
-
일단 홈페이지에 전화주라고 써있는데 전화하고 접수하러 학교 가야하나요? 학교 가는데...
-
언론 분위기를 보면 2026 의대정원은 3058이라고 곧 발표할거같긴 한데요 5
교육부는 본과 3·4학년생을 중심으로 수업 참여율이 높아지고 있는 것으로 파악하고...
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..