수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://orbi.kr/0008354037
![](https://s3.orbi.kr/data/file/united/1930826205_JOwjKlCY_20160430_153210-1.jpg)
![](https://s3.orbi.kr/data/file/united/1930826205_7cvigHpW_20160430_153220-1.jpg)
![](https://s3.orbi.kr/data/file/united/1930826205_3HhXIypq_20160430_153227-1.jpg)
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
으흐흐
-
니트 코디 8
여장 요즘 재미붙어서
-
작년에 박목월 시인 미발표작 대량 발견됐다던데 이거 그중 하나인가
-
나군 인천대 자유전공학부 28명 뽑는데 올해 처음 뽑아서 데이터 없ㅇㅓ요 예비...
-
저도 덕코주세요 3
ㅈㅂㅈㅂㅈㅂ
-
2년연속 9모 1 -> 수능 3 테크 타니까 돌겠음 9모 이후로 자만해서 공부 안한...
-
알바 짤린썰 0
내가 수능끝나고 알바가 너무 하고 싶었음 대학도 이 지역으로 거고 집도 가깝고...
-
지옥에서 돌아온 부엉이와 옵붕이들의 유쾌한 폭동이 시작된다
-
컨관님 3
저도 덕코
-
마리골드 2
왜클릭
-
뭔가 체계 자체는 잡혀있는데 그걸 적절하게 써먹지를 못하겠음. ㅠ
-
컨텐트관리자님 6
덕코주세요 하와와
-
콘텐츠관리자님 5
저 귀엽다고 생각하죠?헤헤헤
-
오늘은 4곡 불럿음 19
드라이플라워 가질수없는너 마리골드 오래된노래
-
아 개웃기네 1
-
애용하는 패션 2
흑청바지 흑청재킷 안에 흰 반팔
-
컨텐츠관리자님 댓좀 10
얘좀 귀엽지않나요 침묵은 긍정의 의미로
-
대유쾌마운틴임 ㄹㅇ
-
돌담병원 미친고래 goat
-
휴식
-
본인 옷 쇼핑 특 10
스스로의 의지와 선호로 사본건 단 한번 뿐...
-
나 좀 친절한듯 3
우울증 그 쪽지 나도 받았는데 으로서 복지제도 소개해줌
-
오르비언들 5
카와이 >.<
-
저랑 싸울사람 4
저 태권도 검은띠에 유도한달경력있음 줄넘기도 다이어트하면서 많이해봄
-
선생님은 갑자기 왠 4기가 나온다는거에요???
-
의자 앉을 떄마다 의자 폭발하는 상상이 자꾸 돼서 너무 신경쓰이고 무서워서 의자...
-
이응 발음할 때 가령 '아기' 발음한다 치면 서울 사람들은 [agi]인데 부울경...
-
컨텐츠관리자 2
모솔인가?!
-
우울감 -1
-
오버핏 맨투맨에 슬랙스 니트에 슬랙스 후드티에 슬랙스 슬랙스만 있으면 다됨뇨ㅋㅋㅋㅋ...
-
또 나만 안 오지 에잉 나만 또 버려졌어
-
닥전인데 vs 아주대라면 어떻게 될까
-
아니면 여러명이 동일계정 쓰시는건가
-
순진한 칼럼러인데 벌점 50있는게 너무 이상해 보이잖아요
-
컨텐츠관리자님 1
바보
-
재미있는 사실 2
서울시 강남구 압구정동에 있는 청담고등학교는 서초구 반포3동으로 이전이 예정되어 있다.
-
컨텐츠관리자님 8
댓 달아주세요
-
물리1 대성 2
안녕하세요 이제 물1 시작하려는 예비고2입니다 지금 시작해도 늦지는 않았겠죠?...
-
첫 글이라 좀 떨리네요 고1 겨울방학, 고2 내신동안 수1,수2 2번 돌림 공부에...
-
이거 머지 7
이런거 처음 받아서 당황스러움 거절하긴 했는데 여기서 이러니까 황당하네
-
하여튼 웃겨 정말
-
이러면 댓글 달아주나?
-
오티때 옷 4
걍 무난하게 아니면 꾸며서?
-
수1,수2,미적 모두 개념은 끝냈고 뉴런도 듣긴 들었는데 안들은 그런 상태입니다...
-
귀엽지 않음?! 근데 걔네들은 귀엽다고 하면 안 믿어
-
※바이럴 아님 1.요리조리 TV -상쇄견 때려잡는 대 병 훈님께서 운영하는 채널로...
-
옷은 그냥 14
무난한 거만 사게 됨
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..