미적분 자작문제
게시글 주소: https://orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현실에 싸진 않음요 다행이다.. 식은땀 났네
-
비단 제 목표, 욕심, 열등감 때문이 아니에요 가장 큰 다른 이유가 있지만 좀 말하기 부끄러움…
-
최고의 아침 0
전날 먹다남은 보쌈+짬뽕국물 아침에 이거보다 맛있는 식사를 한 기억이 손에꼽음
-
윗 학생이 다른 학교로 빠질 점수가 되는지 안되는지 모른다는 겁니다 가장 좋은 건...
-
기차지나간당 10
부지런행
-
술도 안마시고 11
게임도 안하고 스포츠도 안하면 친구 사귀기 힘든듯요 진짜
-
한국 공학대 0
진학사 표본상 2등이였는데, 1등은 3지망이였어요…수석 가능할까요…ㅇㅅㅇ 장학금...
-
내가 먼저 좋아했지만 말을 못하고 있다가 학기가 끝나가는 종강 날에 갑자기 술먹자고...
-
Entj였다가 istp됐긴 한데 내가 봐도 찐 i는 아님 근데 내가 좋아하면 무조건...
-
여러분은 어떤 색이 나올 거 같다고 생각하시나요? 저는 왠지 내년엔 연보라색이나...
-
다들 잘자고 대학 합격하는 꿈꿔요
-
가입은 한참후지만
-
오르비 1
오르비 첫날인데 ㄹㅇ시간녹네요 더 이상은 모 야다~
-
우웅
-
자야겠다 6
너거덜도 잘자라
-
팔로우해주세요 6
-
그냥 구라같음 고백할려는데 술이 핑계인거 같음… 말이 안돼
-
크아악
-
어쩌긴 뭘 어째 수능 봐야지…
-
현역 때의 기분으로 언매 미적 화2 생2를 응시해 보려고 했으나.. 문득 화작 확통...
-
원래 음모론 같은거 혐오하는편인데 실제로 일루미나티가 있으면 뭔가 짜릿할것같아서 믿기로함
-
아쉬운대로...... 12
재탕
-
년도 바껴서 더프 성적 다 날라감;;
-
멍청하게 선포했는지
-
입시 말고는 제 인생의 가치를 증명받을 수단이 없어서 그런 것도 있어요 다른 분들은...
-
설마 2/7에 결과나오는건 아닐테고 2월되기전에 결과 나와야 군입대이슈가 깔끔히 해결되는데..
-
조발 일찍됐으면 좋겠는데 ??
-
차라리 연정외를 써요.... 아니 대체 왜? 이게 말로만 듣던 그 사과계열 덕후에요?
-
오르비에서 답변을 받기 어렵군 하지만 다른 커뮤를 안하는 걸
-
궁금
-
뱃지 4
혹시 무조건 합격증으로만 신청되나요..? 예전에 캡처 안 해놔서 합격증 없는데.....
-
참을 수가 없다 5
연행정 1등 이 분 진짜임? 이거뭐냐시발... 내 눈이 이상한 거지? 718이 행정을 써??
-
웹툰추천부탁해요잉 케찰코아틀은 꼭 봐보시길
-
재수 국어 질문 1
재수를 준비하는 재수생입니다. 국어강사를 강민철vs유대종 고민하고 있습니다. 작년에...
-
메가패스 15만원에 수능때까지 같이 들으실분 구합니다 패스보유하고있습니다 쪽지주세요
-
현역때 물리4떠서 사문으로 틀었는데 지구는 41점 2등급 나왔는데 표본이 ㄹㅈㄷ...
-
무슨 똑똑한 사람 좋아하는 그 집착 그런것도 잇다함… 근데 내가 공부잘하는사람...
-
최초합? 불합권?
-
의대 치대 1
서울사는데 노는 거 좋아하고 서울로 자주 올라온다는 가정하에 제주대 의대랑 지방...
-
심심해서 하는 성적변화 17
현역때 브래턴우즈-헤겔 백분위 96인데 등급이 2로 나온건 진짜 엄….. 이번년도...
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..