[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유
게시글 주소: https://orbi.kr/0008124321
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던
조관 선생님의 포스팅 ( http://orbi.kr/0008006413 )
과 관련된 내용을 써보기로 했습니다.
평균, 분산, 표준편차를 열심히 공부한 학생이라면
한 번 쯤은 해봤을 고민이죠.
——————————————————————
왜 분산은 (편차)²의 평균으로 정의될까?
(편차의 절댓값)의 평균으로 정의하면 안되나?
——————————————————————
(변량)-(평균)으로 정의되는 편차는 변량이 평균보다 큰지, 작은지
그리고 평균으로부터 얼마나 떨어져 있는지를 나타내는 지표입니다.
그러다 보니 산포도 계산에 편차를 쓰는 것은 지극히 당연한 일이죠.
하지만 편차의 합은 0이기 때문에 편차의 평균 또한 0입니다.
이 때문에 편차를 제곱해서 0 이상의 값으로 바꾼 다음
평균을 계산하게 되고, 이를 분산으로 정의합니다.
여기서 편차의 제곱 대신,
편차의 절댓값을 쓰면 안될까요?
이를 알아보기 위해
세 변량 a, b, c (단, a < b < c)의 대푯값을 x로 두고
(편차)²의 평균과 (편차의 절댓값)의 평균을 조사해봅시다.
(1) (편차)²의 평균은 다음과 같습니다.
그리고 분자가 x에 대한 이차식임에 주목해서
완전제곱꼴로 변형하면 다음과 같습니다.
따라서 (편차)²의 평균은 일 때
즉, 대푯값 x가 a, b, c의 평균일 때 최소가 됩니다.
(2) (편차의 절댓값)의 평균은 다음과 같습니다.
그리고 분자가 일차식의 절댓값의 합임에 주목해서
분자로 만든 함수의 그래프를 그리면 다음과 같습니다.
따라서 (편차의 절댓값)의 평균은 x=b일 때,
즉 대푯값 x가 a, b, c의 중앙값일 때 최소가 됩니다.
대푯값 x가 평균일 때 (편차)²의 평균이 최소,
대푯값 x가 중앙값일 때 (편차의 절댓값)의 평균이 최소인 것은
n개 의 변량 에 대해서도 마찬가지입니다.
(3) (편차)²의 평균
따라서 (편차)²의 평균은 일 때,
즉 대푯값 x가 의 평균일 때 최소가 됩니다.
(4) (편차의 절댓값)의 평균
i) n이 홀수일 때
일 때 최소
ii) n이 짝수일 때
x가 구간 에 속할 때 최소
i), ii)로부터
(편차의 절댓값)의 평균은 또는
일 때
즉, 대푯값 x가 의 중앙값일 때 최소가 된다고 할 수 있습니다.
따라서 (편차)²의 평균은 대푯값이 평균일 때 최소이므로
평균 에 대한 분산을
으로 정의하는 것이 자연스럽다는 것을 알 수 있습니다.
또한 변량 의 중앙값이
일 때
(편차의 절댓값)의 평균
를 '평균편차'라고 하며, 임금 근로자 연봉 분포처럼
변량의 분포가 한쪽으로 치우친 경우에 산포도로 많이 사용합니다.
그리고 대푯값/산포도로 평균/분산(또는 표준편차)을 사용하면
중앙값/평균편차의 조합보다 공식의 변형이 자유롭다는 장점이 있습니다.
덕분에 분산을 { (변량)²의 평균 } - (평균)²으로 계산할 수도 있고,
미분/적분이 상대적으로 쉽죠.
추가적인 장점이 또 있는데
그건 제가 이해를 못해서...
[참고 자료] 기초통계학의 숨은 원리 이해하기 (김권현 저)
[알림] 박수칠 수학 미적분1-적분법 단원 부교재가 업로드 되었습니다.
본교재 문제에 수능/모평/학평 기출 54문제가 추가되었습니다.
다음에 작업할 단원은 미적분2-적분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라고
-
없는 비트 생성하면서 읽음
-
옯붕이들 이상형픽 궁금
-
작수 5인데 지망하는 학교가 가산 3퍼 있어서 확통 안하고 기하 하는 중인데 바보짓인가요??
-
미키17 재밌네 0
볼만함
-
날씨 is unleash
-
위로 좀요 1
초5때부터 공부가 내 유일한 가치이자 꿈이었는데 몇년째 실패만 하고 지방대 일반과...
-
저도 귀염체 애니프사단 합류하고 뉴비들 골려줄거에ㅇㅕ! 2
기염기염 컨셉 잡다가 딱 욕 엄청 박은 저격글로 메인 가서 동심을 파괴할 거에여!
-
남자좋아하기만 해도 게이래
-
약협 파워가 진짜 쎈가보네요
-
에휴이 2
저는 나쁜 사람이에ㅇㅕ
-
네! 저 술 못마셔서..
-
오후장 좆됐네 2
국장은 언제 정상화되냐
-
중고에 뉴런 미적 싸길래 바로샀는데 작년꺼다 … 다시 팔까 고민인데 문제만 다른지...
-
흠 9
요즘 폼 메롱이네
-
저번주만 해도 -200이어서 곧 익절하겠다 했는데 순식간에 -2000으로 꼬라박았네...
-
가끔 혼자 신두형 숭배함 야구 혼자보러감 레슬링 채널번호 외움 힙합 개좋아함
-
스트레스 받네..
-
머하고 있어? 6
너 생각 아잉 오빠 왜이래 부끄부끄
-
ㅋㅋ 아
-
옛날에 단발했을때 우정잉닮았다고 들어서 기분째졋는데 추구미는 카즈하임
-
코인 숏 달달하네 16
N제 살돈 마련중
-
1시간째 댓글만 다니까 사람이 할 짓이 못 됨
-
저는 대충 이런 경력이 있고요,,, 서울대 국어교육과 국어 과외 40회 이상 S재종...
-
추가모집 둘 다 붙었는데 어디 갈까요..?
-
윤석열 탄핵되야 0
메리크리스마스~ 김건희 구속되야 메리크리스마스~~
-
24 6모 이세트 8분 46초 걸렸네요 오래 걸리는편인가요? 문학 자꾸 오래걸린다는...
-
사실 한참전부터 유행 지난 것 같은데 긴생머리에 브릿지가 제일 이쁜거같은데...
-
뒤에 모음을 떼면 기여워져ㅇ ㅕ!
-
과탐은 1주일에 1번만 해도되서 개꿀인데 안구해짐 내신도 안고르네 야발 ㅋㅋ
-
노우무 1
???
-
공부하러 가는데 날씨도 좋고 그러니까 오랜만에 꾸몄음
-
수학2 자작 1
양산형 테스트
-
영화로보는서양의역사(월요일 1시꺼), 웨이트트레이닝(목요일 9시꺼)...
-
https://link.yeolpumta.com/P3R5cGU9Z3JvdXBJbnZp...
-
ㅇㅇ
-
부탁합니다
-
내면세계에 공감하면서 화자 중심으로 심상 그리라는게 무슨 말이에요? 0
시를 읽으면서 내가 화자면 어떨지 생각하라는 이야기인가요? 예를 들어서 밑에 시같은...
-
청둥오리 1
-
수학 1
수학풀때 이해가 안되고 내신에만 나올거같은 내용은 그냥 유형 몇개암기해도 되나요?
-
또 잠 처잤네 0
2시간 잤네 점심시간 때부터 쭉... 6시간 수면은 역시 힘든가봐
-
안정권 왔음 ㅋㅋㅋㅋㅋ 대진연 ㅈㄴ패라
-
심심하뇨잇 4
.....
-
특성화고를 졸업해서 모의고사 성적이 하나도 없는데 한 번 풀어봐야 할까요? 지금 제...
-
새 3
물결이 햇빛때문에 반짝이는게 이뻐
-
안쓰는 자리에 물건 올려놓지 마라 형한테 존나 맞는다
-
{명지 자전(인문)vs가톨릭 자연공학계열} 둘 다 합격인데 0
오르비에서 면목 없는 대학이지만 지금 현재 급해서 글 써봅니다. 삼수생이고 올해...
-
내용차이만 크게 안 나면 분량때문에 개정전 듣는게 더 나을거 같아보이는데 어떤가요
-
아니 소름이 아니고 당연한게 아님이 아니고
-
나른하다 4
나-른
ㅋㅋㅋㅋ 오르비스티커 너무 귀여워여
그러니까요... 진짜 예쁘게 잘나왔어요.
그 외에도 확률변수에 대한 적률 적률생성함수 중심적률등과도 관련이 있지 않을까 생각됩니다.
물량공급님 외계어도 쓸 줄 아셨군요.
좀 배워야겠다...
적률생성함수라는 마법의 도구가 있더라구요
찾아보니 학부 확통 과목에서 배웠던 함수네요.
지금 보니 뭔 얘긴지 하나도 모르겠음 ㅎㅎ
최소점이 평균값이기 때문에 제곱을 쓴다는 건 결과론적인 해석이 아닐까요?
제곱을 써야만 하는 수학적 필연성이랄지, 이런게 있으면 좋을 것 같은데요
예를 들어, 정규분포 함수의 식에는 제곱을 이용한 표준편차가 들어가죠. 만약 표준편차를 다르게 정의했을 때 같은 식을 유도할 수 있는지, 그렇지 않다면 왜 그럴 수밖에 없는지 같은 것들 말입니다
본문의 내용은 결과론적인 해석이라기 보다
{ (변량-평균)²의 합 } / (변량 개수)를 분산으로 정의한 이유의
일부라 할 수 있습니다.
근본적인 이유로 들어가자면
{ (변량-대푯값)²의 합 } / (변량 개수)를 최소로 하는 대푯값이 평균이고,
이 평균을 모집단과 표본의 대푯값으로 쓰면 모평균의 가장 합리적인 추정치로
표본평균이 똭~ 나타납니다.
이 부분을 설명하려면 '최대우도추정법'이라는 걸 알아야 하는데
여기서 굳이 설명할 필요도 없고, 저도 잘 모르거든요 ^^;
그래서 '고등학교 수준에서 이 정도 설명이면 충분하겠다'
싶은 선에서 끝냈습니다.
이런 것 보면 아무 호기심 없이 그랬구나...그렇구나...하고 받아들이는 제 자신이 다행스럽네요. 문과여서 여태 통계문제 풀면서 저런 증명이나 원리를 몰라서 틀린 적도 없고 개이득
몰라도 되는 건 이과도 마찬가지입니다 ^^
그냥 궁금해할 수험생들을 위해 정리한거예요~
loss funtion?
손실함수라...
6시그마 교육받으면서 배웠던 건데
갑자기 왜 나올까요? ㅎㅎ
경영쪽 아니고 경제학부 통계시간에 교수님께 배운건데..
추정량과 모수의 차이를 나타내는 함수를 loss function 이라 하지않나요,,? 이거 배우면서 글에 나온 내용도 같이 알게되고 했던 기억이 나서요~
아~ 용어만 같고, 정의가 다른가 봅니다.
제가 배웠던 것은 품질관리쪽에서 손실 비용 계산에 쓰는 함수거든요.
이유식님이 얘기하신 손실함수까지는 공부를 못해봤어요 ^^
저도 맛보기정도만 한 비루한 학부생입니다 ㅠ
댓글 달아주셔서 감사합니다.
헐 신기하네요 이거 궁금했었는데 감사해요ㅋㅋㅋ 오 신기하다 맨날 하필 왜 제곱일까....이랬었는데
제가 기다렸던 반응이 드디어 나왔군요.
감사합니다 ㅎㅎ
절대값을 왜 안쓸까 했는데 쓰는데가 있기도 하군요
그러게나 말이에요.
저도 참고자료 보면서 처음 알았어요~
조만간 책나오면 살건데 박수칠님 글 너무 도움됩니다 모든글 지우지 말아주세요ㅠ
안지울테니 걱정마세요~ ^^