2월 8일 오늘의 상식: 가장 짧은 논문?
게시글 주소: https://orbi.kr/00077480145
세상에서 가장 짧은 논문들은 대개 수학 논문이다
ON A CONJECTURE OF R. J. SIMPSON ABOUT EXACT COVERING CONGRUENCES
DORON ZEILBERGER1
Department of Mathematics, Drexel University, Philadelphia, PA 19104
The following is a counterexample2 to Simpson's conjecture [2]: D = { 6, 15, 35, 14, 210 (140 times) }. It was concocted using the elegant and powerful approach of [1].
REFERENCES
1. Marc A. Berger, Alexander Felzenbaum, and Aviezri S. Fraenkel, New results for covering systems of residue sets, Bulletin (New Series) of the Amer. Math. Soc., 14(1986) 121-125.
2. R. J. Simpson, Disjoint covering systems of congruences, this MONTHLY, 94(1987) 865-868.
----
1 Supported in part by NSF grant DMS 8800663.
2 Another counterexample was found later, and independently, by John Beebee.
이게 놀랍게도 <On a Conjecture of B. J. Simpson about Exact Covering Congruences>라는 논문의 전체 내용이다
대충 내용은 '우리가 어찌저찌해서 B. J. Simpson의 추측에 반례가 있음을 찾아냈다. 그 반례가 바로 D = { 6, 15, 35, 14, 210 (140 times) } 이거다'라는 것이다
B. J. Simpson 씨의 추측이 도대체 뭐길래 이런 논문을 쓰냐고 하냐면
대충 정수론에 관한 추측이다
'x를 mi로 나누었을 때 나머지가 ai이다.'라는 식들이 있다고 하자
만약 유한 개의 mi와 ai를 설정해서 x에 어떤 정수를 집어넣더라도 식들 중 하나를, 그리고 딱 그 하나만 만족시키게 하는 x가 존재한다면 그 식들의 모임을 'exact covering system'이라고 한다
이제 이 exact covering system에서 mi를 나열해서 세트 D = { m1, m2, ..., mn } 을 만들었다고 했을 때(이 세트는 집합과 표기가 비슷하지만 집합이 아니어서 같은 수가 여러 번 나올 수 있다)
이 mi 중 가장 큰 수는 적어도 D 내에서 적어도 두 번 이상 나와야 한다는 것이 원래의 추측인데
논문의 내용은 가장 큰 수가 무려 140번이나 반복되는 것을 반례로 제시한 것으로 보아 나중에 추측의 내용이 '그렇다고 너무 많이 나올 수도 없다' 정도로 바뀐 것 아닐까 싶다
근데 저런 반례들은 정말 어떻게 찾았을까...

이외에 이렇게 오일러의 추측에 반례를 제시하는 논문도 있다
이 논문의 내용은 '컴퓨터를 통해 오일러 추론의 반례를 찾았고 그게 바로 위의 계산식이다'라는 내용이다
오일로 추론이란 a1부터 an까지 n개의 정수가 있고 이들을 k제곱해서 모두 더했을 때, k>n≧2이면 어떤 정수 b의 k제곱이 될 수 없다는 것이다
즉 어떤 정수의 n제곱을 다른 정수들의 n제곱의 합으로 나타내고 싶다면 정수가 적어도 n개 이상 필요하다는 소리인데
그냥 컴퓨터로 27, 84, 110, 133에 5제곱을 한 뒤에 모두 더했을 때 144의 5제곱이 된다는 걸 밝히면서 반례를 제시하고 오일러 추론은 그렇게 논파되고 말았다
참고로 나중에 밝혀진 거지만 2682440, 15365639, 18796760을 네제곱 하고 더해서 20615673의 네제곱을 만들 수도 있다
그리고 그밖에도 오일러 추론에 반례로 들 수 있는 사례가 무수히 많다고 증명되어 있다고 한다

논문인지 조금 애매하지만 이런 것도 있다
내용은 n2+1개의 단위 정삼각형(변의 길이가 1인 정삼각형)으로 길이가 n보다 큰 정삼각형을 모두 채울 수 있느냐는 것이다
아래 그림은 n2+2개로는 가능하다는 것을 보여주는 것
참고로 얘는 안 된다는 게 밝혀졌다
정삼각형의 한 변의 길이를 n+e(e는 충분히 작은 수)라 했을 때 n2+1이 (n+e)^2보다 크기 때문에 면적만 보면 이론적으로 가능해야 하지만
막상 시도하려고 하면 빈틈과 중복 없이 단위 정삼각형을 채워나가는 것이 불가능하다고 한다
물론 단위 정삼각형이 하나 더 있어서 n2+2개면 다소간에 겹치는 걸 감수하고 1개로 커버를 치면 된다고 하고
사실 잘 이해가 안 된다
대충 그런 게 있구나 하고 넘기면 된다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고 -
-
버튜버 그만좀 봐라 2 0
나자신 ㅎㅎ
-
아 과학학원가기 너무싫다진짜 4 1
우마리아쌤 저번 강의도 이해못했는데 이번거 어캐들어
-
20살까지 모솔 ㄱㅊ나요 5 0
모솔인데 재수해서 1년 추가될 예정인데…….. ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
전과 실패하면 어케요 의견 좀 6 1
전과가 진짜 쉬운 학교라고 하긴 하는데…전출 제한 없고 이번엔 전과 허용범위가...
-
09년생 고닉들이 슬슬 양성되네
-
대학 등록금 살벌하구먼 0 0
한학기 492만원 ㄷㄷ.. 내년이면 1년 1000만원 돌파 거의 확정이네
-
조정식 뭐임 ㅋㅋㅋ 0 0
??? : 조정식 월간지 문제의 퀄리티에 대해서 왜 그렇게 자신하는데? ......
-
唸るぜ 우나루제 끓어오르네 血泥ついたって守りたい 치도로 츠이탓테 마모리타이 끈적한...
-
기원이 레어 뭔데 나 강기원 예신 되고싶어하는 사람인데 나한테 넘겨라 ㅇㅇ
-
내가 돼지는 아닌데 8 0
햄부기 먹고싶네
-
아 너무 행복하다 8 0
여러분 사랑하세요 사랑 love and peace....
-
챱추 챱 추 챱챕추 2 1
내가 산 주식은 잡주 잡 주 잡잡주
-
중앙대 너무안도네 0 0
예비2번인데 전추못받았음...진짜 왜그러냐ㅠㅠㅠㅠ
-
과기대 안경광학 과기대식으로 몇점까지 붙었나요?? 0 0
ㅈㄱㄴ 1차 2차 대차 과기대 추합 설과기
-
시립대 인문자전 1 0
현 예비 18번이고 최초예비 32번인데.. 전화추합이라도 가능할런지… 쭉쭉 빠져라아
-
오노추 지먹음 (오늘의 노래 추천,지금 먹는 음식) 10 2
두바이 설빙 맛도리네요 하현상님 노래중에 심야영화 좋아요 스피커로 틀면 감성 터지고...
-
고대 신소재 교우 추합 7 0
고려대 신소재공 교과 우수 최종적으로 예비 몇번까지 합격 가능할까? 여기 썼는데...
-
나는 설의 필요없음 ㅋㅋ 2 0
줘도 씨발 지능이 딸려서 졸업을 못한다고 매달 자살방지금 10억씩 통장에 꽂아줘라
-
부산사나이분들 11 0
부산맛집추천해주세요
-
이 음악을 아시나요 3 1