융합 [1418629] · MS 2025 · 쪽지

2025-12-24 16:55:35
조회수 179

[동기부여] 미적분을 하는 이유

게시글 주소: https://orbi.kr/00076585677

문이과를 떠나서 미적분은 모두가 공부를 하죠

그런데 우리가 왜 미적분을 배워야 되는지 체감이 되시는 분들은 많지 않을 거라 생각됩니다.

저 역시도 고등학생 시절, 미적분을 그저 수시, 수능을 위한 도구로만 생각했지, 이게 도대체 어디에 쓰이는지는 전혀 알지 못했거든요.

대학에 와서 공업수학 교수님께서 하신 말씀이 있는데, 이것을 고등학교 때 알았으면 더 좋았을 것 같아 글을 써봅니다.

단언컨대 최고의 동기부여라 자부합니다!






여러분, 선형(Linear)이 뭔지 아세요?

인터넷에 검색해보니 선형이란 "직선처럼 똑바르거나 1차 함수처럼 비례하는 성질 " 이라고 나오네요.

쉽게 말하면 선형은 1차 함수를 의미합니다.

1차 함수 그래프의 형태는 모두들 잘 알고 계시죠.

이 함수의 가장 큰 특징은 무엇일까요?

네, 바로 예측 가능성입니다.

위 빨간선으로 된 함수를 예를 들어 y=2x라 했을때, 입력값 x=1 라고 하면 출력값은 y=2이죠,

입력값 x=10이면 출력값 y=20입니다.

굉장히 쉬운 형태로, 입력값에 따른 출력값이 예측이 가능합니다.






그렇다면 비선형(Non-Linear)은 뭘까요?

네, 선형이 아닌것입니다.

선형이 아니라는 말은 1차함수가 아니라는건데, 그렇가면 비선형 함수의 그래프는 어떻게 생겼을까요?

워낙 다양하여 하나로 정의할 수는 없지만, 제가 예시를 하나 들어보겠습니다.

이 그래프를 보시면, 미래의 값이 예측이 곤란하거나 불가능하다고 할 수 있습니다.

마치 주식 그래프처럼 말이죠.

이 세상에는 정말 다양한 '비선형'들이 존재합니다.

만약 이 글을 읽는 당신이 공학자가 된다면, 이 예측이 곤란하거나 불가능한 '비선형'들을 예측해야만 합니다.

이제 좀 감이 오실까요?

예측이 곤란한 비선형을 예측이 가능한 선형으로 선형화 시키는 과정을 미분이라고 합니다.

왜 그런지 설명을 드릴게요.






미분이 뭘까요?

네, "미세하게 나누는 것" 입니다.

위에서 보여드린 비선형 그래프를 미세하게 나눠보겠습니다.

아직 미세하지는 않지만, 비선형 그래프를 n등분으로 나눠보았습니다.

이제 저 나눈 부분들 중 하나로 확대를 해볼게요.

 

확대를 했는데도 불구하고 아직도 직선이 아닌걸 보니 선형이 아니네요.

다시 저 부분을 나눠보겠습니다.

초록색 선으로 나눈 저 부분들 중 하나로 다시 확대를 해보겠습니다!

많이 짧기는 하지만 드디어 '선'이 나타났네요?

우리는 이 짧은 부분을 비로소 예측할 수 있습니다.


우리가 미분, 즉 미세하게 나누는 이유는 바로 이것입니다.

구불구불하고 어지럽고 예측 불가능한 비선형을 잘게 잘라 선으로 만들어 예측이 가능하게 만드는 것입니다.






그렇다면 여기서 질문.

저 아주 작은 저 부분 하나 예측하는게 무슨 소용이 있나요?

의미가 있는건가요?

네. 의미 없습니다. 너무 작으니까요.


그래서 이 예측 가능한 작은 부분들을 합지는 과정이 필요합니다.

그것이 바로 적분입니다!

적분이란, "미분으로 잘게 나눈 예측 가능한 조각들을 다시 모두 합치는 과정" 인 것입니다!

저 쪼가리를 다시 원상태로 붙여보겠습니다.


비로소 우리는 처음엔 예상이 불가능할것만 같던 이 비선형 그래프를 예측할 수 있게 되었습니다.

이것이 미적분입니다.






어떠신가요? 우리가 미적분을 배우는 이유는 수능 성적을 잘 받기 위함도 있지만, 

복잡한 세상을 이해하고 미래를 예측할 수 있는 사고방식을 기르기 위함입니다.

이것이 우리가 미적분을 배워야 하는 진짜 이유입니다.

이 아름다운 미적분의 세계에 당신도 빠져보실래요?

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.