[논술]서울대 재학, KMO금상, 연논 최초합격자의 수리 논술 공부법
게시글 주소: https://orbi.kr/00074857037
28일 작전 수리논술 맛보기 문항.pdf
안녕하세요,
저의 첫 수리논술 저서 <28일 작전 수리논술>의 예약판매가 시작되었습니다.
? 예판 링크:
- - 저자 소개
서울대학교 기계공학부(주전공) 및 벤처경영학(복수전공) 재학
세종과학고등학교 졸업
중등 KMO(한국수학올림피아드) 1차 금, 2차 동
세종과학고 교내 수학경시대회 금
대학 입시 합격 경험
- 서울대학교 기계공학부 일반전형(수학 심층고사) 최초합
- 연세대학교 전기전자공학부 논술전형 최초합
- 연세대학교 기계공학부 활동우수전형 최합격
- POSTECH 무은재학부 최합격
- 고려대학교 전기전자공학부 계열적합전형 합격
서울대학교 수학 관련 과목 모두 A+(상위 10% 이내)
(고급수학1, 고급수학연습1, 수학2, 수학연습2, 통계학, 공학수학1, 공학수학 2, 경제수학)
- - 교재 소개
<28일 작전 수리논술> 은 기존 기출 해설집이 아닌, 저자가 직접 제작한 완전히 새로운 문제들로만 구성된 교재입니다.
- 모든 문제 100% 직접 제작
- 논술 전용 개념 설명 및 증명
→ 수능식 풀이가 아닌, 논술 답안에 맞는 서술과 증명 방식 - 단계적 학습 구조
→ 각 개념별 기초 논술 문제 → 심화 문항으로 이어지며 자연스럽게 난이도 상승 - Advanced Problem 18문항 수록
→ 최상위권 대비용 고난도 논술·심층 문항 (이 또한 전부 직접 제작) - 본문 149페이지 + 해설 132페이지
→ 특히 해설은 단순 풀이가 아니라 논술 답안 작성 흐름을 익히도록 상세히 구성되어 있습니다.
? 꼭 해설까지 꼼꼼히 읽어보시길 권합니다.
문제를 풀고 난 뒤 해설을 통해 사고 과정을 다시 점검하는 것이, 논술 실력을 키우는 핵심입니다.
문제를 풀다 보면, 때로는 현 교육과정에 포함되지 않은 개념들이 등장하기도 합니다. 예컨대 삼각함수 치환적분, 단조수렴정리, 공간벡터 같은 내용은 교육과정 밖이지만, 제시문으로 주어질 수 있으며 실제로 풀이 과정에서 큰 도움이 됩니다. 이 책에서는 교육과정에 포함되지 않는 부분을 모두 제시문 안에 포함시켜 두었으니 참고하면 되고, 특히 삼각치환이 필요한 문제나 공간벡터 개념이 필요한 문제는 따로 표시해 두었습니다. 따라서 계산 직전까지 식을 세운 뒤 그 이상은 필요 없다고 판단되는 학생은 그 단계까지만 진행하고 넘어가도 됩니다.
저자 또한 입시를 준비하며 수많은 학원을 다녔고, 그 어떤 학원도 이러한 정리들을 가르치지 않은 곳은 없었습니다. 이는 단순히 교육과정 여부의 문제가 아니라, 수리논술에서 사고의 폭을 넓히고 직관을 기르는 중요한 도구이기 때문입니다. 풀이 방법의 시작점에서 단조수렴정리로 수렴성을 직관적으로 판단하는 것처럼, 이런 정리를 알고 있느냐의 차이가 문제 해결 속도와 깊이를 바꾸기도 합니다.
저자의 경험을 돌아보면, 중학교 시절 KMO 준비 과정에서 접한 정수론, 대수학 같은 교육과정 밖 수학이 훗날 수리논술/심층 학습의 탄탄한 베이스가 되었습니다. 교육과정에 포함되지 않았다고 해서 “몰라도 된다”가 아니라, 알고 있으면 더 다양한 사고를 가능하게 하고 문제 해결력을 높이는 자산이 될 수 있음을 강조하고 싶습니다.
추가로 책에서는 편의상 샌드위치 정리라는 용어를 사용했습니다. (실제 본문에서는 "이후 서술에서는 편의상 샌드위치 정리를 사용한다"고 밝혔습니다.) 이 점 참고해 주시기 바랍니다. 참고로 저자 본인도 수험 당시 답안에서 그대로 “샌드위치 정리”라는 표현을 사용했으며, 문제가 된다고 느낌을 받지 못했습니다.
++지난번 이후 고등수학 범위 내에서 문제 될만한 부분 수정했습니다. (예: 지수의 밑이 0이상)
- - 검수진
서울대학교 건축학과(주전공)
전기정보공학부(복수전공)
· 서울대학교 건축학과 일반전형 최초합
· 카이스트 일반전형 최초합
· 세종과학고등학교 조기졸업(성적우수)
· 대치동 학원 조교 경험(3년 이상)
- - 마무리
<28일 작전 수리논술> 은
- 처음 시작하는 학생에게는 기초를 다지는 발판,
- 도전하는 학생에게는 심화로 나아가는 도약대,
- 최상위권 학생에게는 충분히 완결된 대비서가 될 수 있습니다.
수리논술에서 중요한 것은 “이미 본 문제를 잘 푸는 능력”이 아니라, “처음 보는 문제를 끝까지 고민하고 풀어내는 힘”입니다.
이 책은 바로 그 힘을 기르는 데 초점을 맞추었습니다.
현재 논술 시즌, 지금이 바로 시작할 때입니다.
? 예판 링크:
맛보기 문제 첨부 했으니 예약 판매 시기에 풀어보세요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
벌써 8문 개방하면 수능 전에 죽을 듯
-
과탐.. 0
뭘 파볼까 물1생1..
-
매체가 재밋어보임
-
존나씹스럽네 ㅋㅋ
-
아 0
화2 왜했지
-
아빠도 이제 한계다. 11
아빠도 이제 한계다. 그냥 나가 살아라 유전자 탓 사회탓 환경 탓하지 마라. 아빠도...
-
확통이들은 뒷쪽갈수록 공부안하니깐 작수27번 정답률27퍼하나 추가해서 조금 만 더...
-
유종애미를 거둬야지
-
현역인데 미쳤냐 내가니랑왜감 이런것도아니고 구체적으로 이유를 들어서 완곡하개 거절함...
-
저는 object subject 이거 같음 뭘로 해석하느냐에 따라 지문 난이도가...
-
내후년은 통합과학... ㅇ.ㅇ
-
내가 빡.통 학벌이라
-
강영찬 수학 0
ㄱㅊ은 것 같은데 들어보신분? 일단 얼굴이 유잼임
-
10월달부터 이 책 다 읽을때까지는 오르비 안 들어 올래요!
-
그때 기하 확통 만표 생각해보면 됨
-
ㅈㅂ요
-
백분위 99줌..?
-
끄투하실분 4
구해요
-
화작미적세지사문 백분위 93(or95) 84 92 95 영어2등급 수학 사설에서는...
-
평가원의 최소한의 배려임 사실 어차피 통통이들은 15 22 안풀기 때문에...
-
정병훈 강의 0
현강 말고 듣는법 있나요??
-
2년째 수학 사설이든 평가원이든 백분위 86-88 진동인 재수생이에요 기출 안한지...
-
?
-
확통3등급으로연대가기 15
가능?
-
정파 제대로 하려면 무조건 자퇴해야하나요?
-
ㅅㅂ 이게 맞나...
-
그게 나야 바 둠바 두비두밥~ ^^
-
급식시험기간 0
지금 중간 막바지같은데 혹시 2학기 기말이 수능 전인가요? 재종나오고 스카가려하는데...
-
미적 출제 교수 2
?? : ㅅㅂ 차수논리? 이 ㅅㄲ들 ㅈ돼봐라 28번 매개변수 미분법 출제
-
술 먹고싶다 0
ㅋㅋ
-
현역인데 2
45일동안 국어 신분세탁 가능함??
-
만표 미=기와 기80점 3등급이 공존함
-
어려운 예제를 좀 풀어봐야 개념을 어케 활용하는지 감을 잡는데.. 전공책에는 너무...
-
아무거나 사소한거라도 괜찮습니다... 뭐든 해볼게요..
-
대도인강 처음 봤는데 개웃기네요 ㅋㅋ 토요일 반이랑 다란 사람같아요 ㅋㅋ
-
광운대 명지대라도 가세요 경상도 사람 아니면 무조건 타 대학 진학하시길
-
미적 ㅈ같으면 반수생들 돌아오겠지? 이생각으로 내는거 아니냐 ㅋㅋ 교수님 수학이...
-
성적도 안나왔는데 더죽고싶네
-
달성했으니 이번 시즌은 좀 줄여야겠다
-
우리야 수험생이니까 난이도 선지배치 준킬러 킬러 배분 선택과목 편차 이런거 고려하고...
-
3인가요? ㅅㅂ하
-
마루데~ 4
언능 보러가고 싶어오..
-
차라리 머릿속을 애옹으로 채워넣으세요 애옹
-
말하긴 그렇긴한데 화작100 137확인했음 1컷 93
-
이게 진짜 88이라고???? 생각보다 1등급 프렌드들이 킬러뚫는 힘이 있구나
-
안그래도 기분 안좋은데 인생 시발
-
ㅇㅇ? 띵학모 뭔가 개 어려울 듯한 느낌인데 요즘 기조 반영 잘 되어있음? 난이도...
-
마치 국어계의 하예은 같으시군요
지리네

스펙 대박이다..KMO 금상 ㄷㄷ
ㄷㄷㄷㄷㄷㄷ
첫번째 문제 만드신분이셨나요? 이문제 심층대비 수업이나 모 영재고 수학세미나에도 등장하는 문제인데 최초 제작자가 여기있었네요
제가 현역 시절까지 5배수 이항계수 합 문제는 본 적이 없어 해성과 함께 직접 만들어 봤습니다! 2024년 1월 쯤 과외 하면서 시험문제 용으로 만들었으며, 해당 문제(5배수 합)를 포만한에서 공개한 적은 있습니다.
다만, 이 문제는 경시 경험이 있는 학생이라면 충분히 고민을 거쳐 도출할 수 있는 유형이기에, 타 학원에서도 유사하게 출제되었을 가능성이 있습니다.