허곡신거 [902596] · MS 2019 (수정됨) · 쪽지

2025-07-23 01:04:47
조회수 25

trace formula

게시글 주소: https://orbi.kr/00073939612

Theorem. (Selberg trace formula) Suppose $\Gamma\backslash\Bbb H^2$ is compact. Let $\Phi\in C^\infty_c(\Bbb R)$, and let $\{\lambda_i\}$ be the $\Delta$-eigenvalues, counted with multiplicity, where $\Delta$ denotes the Laplace-Beltrami operator on $\Gamma\backslash\Bbb H^2$. Let $r_n = \sqrt{\lambda_n-1/4}$ and define $g\in C^\infty(\Bbb R)$ and an entire function $h:\Bbb C\to \Bbb C$ by

$$g(r) = {1\over 2\pi}\int_{\Bbb R}h(r)e^{-iru}dr = \int^\infty_{e^u + e^{-u}-2} {\Phi(t)\over \sqrt{t-(e^u+e^{-u}-2)}}dt$$

and

$$h(r)  =\int_{\Bbb R} e^{iru}\int^\infty_{e^u + e^{-u}-2} {\Phi(t)\over \sqrt{t-(e^u+e^{-u}-2)}}dtdu,$$

where $\Phi$ is a some compactly supported smooth function on $\Bbb R$, associated to a test function $\phi\in C^\infty(\Bbb H^2\times\Bbb H^2)$.


Then we have "Spectral side = Geometric side"

$$\sum_{n = 0}^\infty h(r_n) = {\mu(\Gamma\backslash\Bbb H^2)\over 2\pi}\int_0^\infty r h(r)\tanh(\pi r)dr + \sum_{I\neq\gamma\in\Gamma}{\log N(\gamma_0)\over N(\gamma)^{1/2} - N(\gamma)^{-1/2}}g(\log N(\gamma))$$

where $\gamma_0$ denotes a generator of the centralizer of $\gamma$ in $\Gamma$ and $N(\gamma)$ is the translation length of $\gamma$, i.e. $\log N(\gamma)$ is the length of the unique geodesic representative of $\gamma$ in $\Gamma\backslash\Bbb H^2$.


One can equivalently express the trace formula as follows:


$$\sum_{n = 0}^\infty h(r_n) = 2(g-1)\int_\Bbb R rh(r)\tanh(\pi r)dr + \sum_{l\in L_\Gamma}\sum_{n = 1}^\infty {l\over 2\sinh(nl/2)}g(nl).$$

Here, $L_\Gamma$ denotes the set of lengths of primitive geodesics.


Prime geodesic theorem 같은 필즈상 수상자 연구 분야와 밀접하게 관련있는 내용. unmarked length spectrum 의 올바른 motivation임 (그냥 하는게 아니라).

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.


  • 첫번째 댓글의 주인공이 되어보세요.