보슨 [1266828] · MS 2023 (수정됨) · 쪽지

2025-06-08 22:12:33
조회수 188

(뇌피셜 주의)허수강사가 미적분 28번 분석해보았습니다

게시글 주소: https://orbi.kr/00073397395

h(x)=ln(x^2+x+5/2)-(ax+b)라 할 때 h(x) 이 수식이 마치 평균값 정리 증명과정에서 나오는 아이디어를 활용해보라며 유혹하는 거 같아 이 관점에서 해석할려고 합니다


h'(x)= (2x+1)/(x^2+x+5/2)-a에서의 부호는 f'(x)의 부호에 결정되며 f(x)의 개형을 파악할 수 있습니다


(나)조건

1. f(3)*f(-3)<0이다

=>사잇값의 정리를 적용하여 열린구간(-3,3)에서 f(x)는 적어도 하나의 실근이 나온다는 의미입니다


2.f'(2)>0이다

=>(2x+1)/(x^2+x+5/2)-a에서 a값이 10/17보다 작거나 같아야 합니다

=> h'(x)의 그래프를 그려보고 f(x)의 개형을 구하면 f(-3)<f(3)을 알 수 있게 하므로 0=<f(-3)<f(3)이고 f(-3)<f(3)<=0이되기 때문에 

1번 조건에 의하여f(-3)<0 이고 f(3)>0어어야 합니다


평균값의 정리와 롤의 정리에 의하여 -2/3<a<=10/17에서 h(x)= ln(x^2+x+5/2)-(ax+b)는 서로 다른 세 개의 실근을 갖으며 양 끝값을 구간으로 잡고 구간 내 x=3 또는 x=-3를 포함하며 이미 f(-3)>0 또는 f(3)<0이기 때문에 (나)조건 1번에 어긋납니다

(* 10/17이 나오는 이유는 함수 ln(x^2+x+5/2)에서 x=2에서의 미분계수이기 때문입니다)


도함수h'(x)에서 a=-2/3일 때만 원함수 h(x)에 있는 ax+b는 ln(x^2+x+5/2)에서의 변곡점에서의 접선의 방정식이 됩니다. 이러한 사실로 인해 h(-2)=0이 되고 f(-2)=0이 되므로 (나)조건 1번과 2번을 동시에 만족하게 됩니다


a<-2/3일 때 함수 ln(x^2+x+5/2)에서의 접선의 최솟값에 못 미치고 b를 하나의 값으로 고정시킬 수 없기 때문에 상수가 아니게 되어 틀립니다








0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.