내가 수학을 못 하는 이유를 알아냄
게시글 주소: https://orbi.kr/00073263053
이 문제가 어떤 유형의 문제인지 알면 대부분 다 풀 수 있는데,
상황파악이 안돼서 문제를 못품
당연한건가
근데 그게 쉬운 문제에도 적용이 된다는게 문제임
이쥐랄 하고 있음 진짜 ㅋㅋ 병신새끼가
저런 거저주는 문제도 못 먹는게 사람새끼인가
이 문제도 부분합과 일반항 사이의 관계 써먹는 문제인거 몰라서 저런거임.
수열의 합공식 네가지에 없네... 소거형 급수인가? 인접항을 빼기로 어케 구성하지 이지랄 하고 있으니 참...
제가 강의 듣고 복습할 때, 문제 상황을 외우고 푸는 경우가 많아서 그런가 아닌가 걍 기억에 남는건 당연한 거 아닌가
모르겠음요 뭐가 문제인지
이런 경우는 어떻게 해결해야대나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 1등급 거의 고정적으로 뜨는 사람한테도 추천함?
-
요즘 너무 숟가락이던데
-
수학황들아 7
투표좀..
-
의대생이 되고싶어한다는디 맞나
-
연상, 연하 2
연중
-
기부니가 좋습니다
-
흥분되는 D-167…
-
6평 D-6 0
우리 학교는 안 본다니까 나중에 따로 풀어야겠다
-
금일 2경기입니다 많관부
-
개념 -5 코돈 2분남아서 못봄 -3 42임 ; 개념에만 18분정도 쓴 듯 시간...
-
루틴으로 아침에 운동하고 9시에 갈라하는데 비추인가요....
-
서울대 메디컬 3
내신cc 나올것 같은데, 현실적으로 서울대메디컬이 가능할가요?? 참고로 탐구는 물2화2입니다
-
자각몽 아니면 이렇게 실감나고 오감을 자극하는 경우가 거의 없는데 이건 진짜 너무...
-
등차수열의 합 식세우는데 a+13d=92가 나오면 안되는건가요 해설지하고 제가 세운식이 달라서요
-
과외시급 10
과외구하고 있는데 대학생과외긴한데 성과랑 경력 좀 많은편이시긴함 시급 8 이라는데...
-
뭐지 0
택시 아저씨가 신호 기다리는데 갖즈기 문열고 나가서 창문 닦음 개당황
-
ㅇㅂㄱ 2
국어공부해야지
-
아 속 울렁거려 3
잠을 한두시간 밖에 못자고 기차타서 당연히 속이 울렁거리는건가
-
5덮 영어 쉽네 0
60분 걸렸고 채점 안해봐도 1임
-
비문학 사회 경제 제재 단원별 기출 모음 (8) - 독점 1
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
20250529 2
중요한 건 꺾이지 않는 마음이다
-
휴 늦잠안잤다 2
밥먹고 가도 안 늦겠다
-
러셀이랑 다르게 언급이 없네.
-
어떤가요. 부담스러우면 쪽지라도
-
이거 사람들마다 답이 다 달라요. 12345 정답 다 들어봤는데 정답이 뭔지를 모르겠네요
-
국어 실모 검토 알바 붙었는데 한번도 해본적이 없어서 그냥 가서 배우면 쉽게 할 수 있을까요??
-
패턴 안맞춰도 별로 상관 없는 듯
-
흠 1
ㅡ,ㅡ
-
수능을 더 친다거나 그러지는 않을거같고 그냥 위고비맞고 살도 빼고 잘맞는사람 만나서...
-
신의탑 이거 그냥 10
3부 싹다 삭제하고 새로 시작해주면 좋겟네
-
빅나티 - 마지막 시
-
그러려면 일단 대학 먼저 보내줘야됨 근데 대학을 가려면 지금 자고 공부해야됨 하지만...
-
아는사람 없겠지 이제
-
님들 아침에도 보이던데 20
그렇게 짧게 자서 생활이 어떻게 됨?? 진짜 알고싶음 ㅅㅂ 제발
-
미적 내신으로 3
고쟁이만 풀고 무한 학교기출 푸는거 어떻게 생각하시나요? 미적 3점 문제와 4점문제...
-
내가왜그랬을까
-
화2생2 가산 투과목 가산 과탐 가산 가산점 X(사탐 =과탐)
-
국수평균 어디서 볼 수 있나요 응시를 안 해서ㅠㅠㅠ
-
추억의 게임 7
클오클
-
에이 ㅋㅋ 그런 원과목이 세상에 어딨어요 ㅋㅋㅋ
-
탁탁탁 2
탁탁
-
컄ㅋㅋㅋㅋㅋ
-
간호학과 평백 85정도 받으면 어느학교 갈수잇나요????
-
고민중
-
그 이후의 작품들은 다 팬이 만든 망작으로 생각함
-
지방한 꺼지쇼 난 설경제 갈랑께
-
오르비 활동을 일주일 가까이 안하다시피 했는데 레어는 단 하나도 안팔림
수능 수학의 기본은 걀국 소재와 표현법이에요
어쩌한 소재를 어떻게 표현하냐에 따라 문제의 배점과 번호가 바뀌겠져. 쉽게 말해 소재는 내용물 , 표현법은 포장지라고 보시면 되여. 확실하진 않지만 제가 보기에는 저 문제를 해결하지 못한 이유는 소재보다는(저 문제의 소재는 보다시피 그리 어렵진 않아요) 표현법에 대한 적응(?)이 부족한 느낌이 들어요. 표현법은 진부할 정도로 많이 쓰인 합과 일반항의 관계이기 때문에
1. 문제 풀이량의 부족
2. 단순히 문제의 답만 내어 실질적인 표현법에 대한 이해 부족
둘 중 하나일 것 같아여
조언 감사합니다.
둘 다 어느정도 영향이 있는 거 같아요.
아이디어 추천
아이디어 이미 했어요 작년에
김기현 선생님이 그런건 좋은 거 같아요.
확실히 어떤 발문에서 어떤 생각을 해야 하는지 딱딱 알려주는
근데 범준쌤이 확실히 신박한 접근 많이 알려주는 거 같아서 범준 쌤 듣고 있어요
수열의 합이 상수항이 없는 이차식인 상황이
24학년도 6평에 똑같은 형태로 더 어렵게 기출된 적이 있어가지고 기출 좀 더 풀어보시면 요런 형태에 바로 반응하실 수 있을 것 같아요!
저기서 어떤 고민까지 했냐면,
일차항이 없어도 되나? 이런 고민까지 해서 ㅋㅋ
경험이 많이 부족한 거 같네요. 감사합니다.
저문제봣을때 첨에 일케풀엇는데
1. an몰라 bn등차
2. 한번 빼보고 1 넣어볼까?
3. Bn완성됏네 그러면 an아네
여기서 2번 이 안돼서 못풀엇다는거?
ㅇㅇ 2번이 안됨.
a1=2, b1=2라는 조건 쓰려면 저 식이 항등식이니까 양변에 1 대입하는 건 당연한 수순인데
그걸 못함
부분합과 일반항 사이 관계도 못 떠올리고
그냥 상황파악을 개못함...
고수네 역시 대 혜 원
그냥 시그마로 무한개의 합이 뭉쳐있으면 눈에 보기 불편하니까 뭉쳐잇는 합을 풀어줄라고 빼는 행위를 했는데
그냥 개념강의 빨리듣고 문제 많이 ㄱㄱ
그냥 경험부족인듯
개념강의 빨리 들어야지
같이 설대 ㄱㄱ혓 수이팅
어쩌다가 이 글을 봤는데요
문제 풀면서 왜 이렇게 되고 왜 이렇게 되어야 하는가에 대해서 이해, 납득하는 연습을 많이 해보시는걸 추천드려요
조급하게 마음 먹지 마시고 문제 하나하나에서 고민하고 이해했던 정말 사소한 생각 하나하나가 피와 살 근육이 돼서 지식과 지식을 잇고 피지컬을 만드는 거거든요 정말 피와 살 근육이 돼요
저는 처음 기출 분석할 때 저런 문제를 이렇게 이해했어요
모든 n에 대해서 합 Sn의 값을 알려준 거면
S1, S2, S3, ... 다 준 거면
n=1일때랑, n과 n+1 사이의 Sn의 간격 또한 준 거네
S1이랑 S2-S1, S3-S2, S4-S3 다 준거니까
아 그러면 a1, a2, a3, ... 다 준 거라고 할 수 있네
an 일반항을 어떻게 알 수 있을까?... 음.. Sn+1과 Sn을 빼면 an+1을 알 수 있겠네
=> 아 Sn 일반항과 a1값, an+1 일반항은 논리적으로 동치구나
그리고 "등차수열의 합 Sn에서 일차항이 없어도 되는구나" 이런 깨달음을 얻어가는거 좋아요 그런데 이 결론에서 멈추지 말고 왜 그럴까? 있는 것과 없는 거랑 무슨 차이가 있지? 무슨 영향을 주지? 왜 상수항은 있으면 안되고 일차항은 있어도 되지? 그 이유가 뭘까에 대해서
책상 앞에서는 일단 넘어가더라도 책상 밖에 있을 때 계속 생각하면서 자기 방식으로 이해하는 연습을 해 보시는 걸 추천드려요
왜 그럴까? -> 아 이렇기 때문일까? -> 아 이렇다고 할 수 있겠네 -> 어라 전에 어떤것은 그랬는데 이건 이렇네 무슨 차이가 있지? 이렇게 집요하게 물고 늘어지다 보면 연쇄적으로 깨닫는게 있고
이 순간순간의 생각한 것들은 비록 단 한 문제에서 시작한 사소한 생각이었을지라도 꼬리에 꼬리를 물고 이해가 탄탄해지면 나중에 수백 수천 문제를 이전보다 더 위에서 내려다보면서 풀 수 있게 돼요
당장은 별 필요 없는 생각 같고 당장에 산더미처럼 쌓인 문제를 먼저 쳐내는게 더 급해보이지만
이런 생각 하나하나가 생각주머니에 쌓이고 쌓여서 수학실력의 피와 살이 되는거고
이런 소화과정이 꼭 있어야 문제를 섭취하는게 의미가 있게 되고 탈나지 않게 자기 페이스를 적절히 조절해야 해요
이런 사소한 것들이 오랜 시간 쌓이고 쌓이고 쌓여서 근본적인 본질적인 실력의 차이를 만들고 남들이 볼 땐 벽이 되는 거거든요
비록 수학뿐만 아니라 모든 과목이 다 똑같은 것 같아요
공부할때 한 생각이 피와 살이 되고 근육이 되고 자산이 돼요
그래서 스스로 더 발전하고 싶으면 무엇을 풀지? 누구 강의를 들어보지? 이런 고민보다 어떻게 하면 수학을 더 잘할 수 있지? 앞으로 이런 문제를 마주쳤을 때 어떻게 대처해야 하지? 이 문제의 핵심과 본질은 뭐지? 어떻게 계산과 케이스분류를 피해갈 수 있을까? 이런 답답함 의문을 계속 느끼면서 공부해야 하고
절대 난 모든걸 다 깨달았다고 자만해서도 안 되고 좌절해서도 안 되고 공부가 편한 거라고 생각하면 안 되는 것 같아요
정말 많이 생각하고 집요하게 파고들어보시라고 말씀드리고 싶어요
어부에게 물고기를 주고 하루 배불리는 것과 물고기 잡는 법을 알려주고 평생 배불리는 것의 차이에 대한 우화가 있잖아요
저는 물고기 잡는 법을 알려드리고 싶은데
많이 생각하라는 말 한마디면 전부인 것 같아요
그게 가장 기초 원동력인 것 같고
정말 명실상부한 기출 "분석"을 해서 문제의 논리적인 구조를 완전히 본인의 것으로 만들고 이해하려는 연습을 열정과 흥미를 갖고 집요하게 한 번 해보시라고 권유드리고 싶습니다