241128 을 시험장에서 처음 만났을 때의 당혹감을 느낄 수 있는 문제.
게시글 주소: https://orbi.kr/00073190370
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잔다 1
르크
-
살도 빼고 달라질거야 응응
-
진짜루요
-
6모 끝나고 심찬우 쌤 생글 들으면 좀 늦을까요...? 늦다면 바로 기출 커리로...
-
f(x)=0의 실근 중 0이 꼭 있어야겠네? > 실근 중 2개는 꼭 정수여야겠네 >...
-
쪽지는 사양함
-
할거하고자야겠다이런;
-
요즘 트렌드에 잘맞게 선별해놓은? 지수로그 살생활이나 격자 이런거 안들가있는책으로 ㅎ
-
개ㅅ끼 ㅅㅂ 왜 맨날 나만 부려먹어 진로부장이 반마다 있고 진로실 옆엔 다른 반인데...
-
어케됐을려나
-
3월달 부터 공부를 시작했는데요! 화작미적영어쌍지 처음 3월은 55335에서 국어...
-
ㅇ
-
저는 중학교때 ㅎㅎ
-
정말 대머벨에게 예의가 아니겠지?
-
하 좃같다 4
타야하는 버스 두개가 눈앞에 지나가는 기분을 아시나요
-
(오피셜)사망 1
ㅠㅠ
-
현역더프현장응시 4
더프현장응시 고등학생안받는줄모르고 신청했는데 환불도안되서 그냥 볼려고하는데 생년월일...
지랄맞네진짜저거사람이풀순있는건가문제생긴거보소
미적 킬러는 비주얼부터 ㄷㄷ하다
이거 기출이에요?
강k
비주얼 미쳣네..
작년 강k 거의 기억 안나는데
이 문제만큼은 기억이 생생함 ㅋㅋ
맞나모르겠으
g(x) 치역이라는 말은 잘못됐네..
함수값이 존재할 수 있는 범위+꽉차야함(?)
x1 x2로 뇌절하는 거 보니 분명 작년 강k 초중반 회차겠군요
근데 f(g(x))=x가 성립하는 게 f랑 g가 역함수라는 거랑 필요충분조건이 아닌데 f(x)의 정의역을 이용해서 적분상수를 결정할 수 있는 근거가 뭔가요
C1-1≥0, C2≤2, C1≤C2만 만족하면 되는 거 아닌가
f(x)는 (0,2)에서 역함수를 가지므로 f(g(x))=x 는 g(x)가 f(x)의 역함수이다 를 보장합니다.
상수구간이 있어도 역함수를 가진다고 하나요..?
엄밀하게 말한다면 f(g(x))=x 라는 항등식은 f(x)의 부분 역함수를 g(x)로 정의한 식으로 볼 수 있는데, 이 경우에는 f(x)가 굳이 역함수를 가지지 않아도 됩니다. 그럼 x≠ln3 에서 g(x) 가 f(x)의 부분 역함수로 정의되는데, f(x)의 입장에선 정의역의 집합으로 0~2를 가지므로 그것의 부분 역함수도 0~2라는 치역을 가질 수밖에 없게 됩니다.
아이고.. 설명해주셔서 감사합니다 지금은 좀 헷갈리는 부분이 있어서 내일 다시 보도록 할게요
역함수라고 이해하면 오히려 헷갈려서 전 y=x 대칭도형 위의 선택함수(부분집합)라고 이해함 이러면 f(g(x))=h(x) -> g(x)는 y=f(x) 그래프 y=x대칭도형 위 선택함수에 h(x)를 합성한 함수로 이해할 때도 직관적이라 좋아요
예를들면 이렇게
문제상황에서 적분상수가 특정되는이유는 g(x)그래프가 f(x)그래프의 부분집합을 대칭시킨거라 그래요
왜 대칭관계인지 직관적으로 안와닿으시면 이렇게 축 돌려보셔도 되고 y=g(x)가 점 (a, b)를 지난다 : g(a)=b => f(b)=a : y=f(x)가 점 (b, a)를 지난다에 대우 취해서
y=f(x)가 지나지 않는 점의 y=x 대칭점은 y=g(x)도 안지난다 이해해보시면 됨
g(x)의 적분상수 값을 적당히 조절하면 다른 구간에서 f(x)와 부분역함수인 다른 함수를 세팅할 수 있을 거라고 생각했었어요 설명하신 것들은 잘 읽어봤습니다 감사합니다