[칼럼] 『영역전개』 '어제거보충'
게시글 주소: https://orbi.kr/00073065974
어제 칼럼에서 안 다루고 넘어갔던 25년 9월 30번
사실 이 문제를 영역으로 쓱쓱 정리한 다음 EBS 해설지를 봤었는데
학생들이 보기에는 좀 덜 직관적이지 않나 하는 생각이 들었습니다
사실 영역으로서의 벡터라는 칼럼을 쓰게 된 계기가 된 문제이기도 하고요
본격적으로 문제를 풀기에 앞서 어제 말한 벡터의 영역에 대해 총론에 관한 이야기를 하자면
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에서 사실 2는 수능에서 벡터의 크기가 최대일 때, 최소일 때 등의 상황을 묻는 문제가 자주 나오는데
벡터의 크기라는 것이 사실상 시점과 종점을 잇는 선분의 길이나 다름 없으니 벡터를 선분으로 환원하자는 얘기라서
실질적으로 벡터를 다루는 것과는 거리가 좀 있긴 합니다
그렇다면 1과 3은 어떠하냐
사실 1과 3은 실질적으로 같은 의미입니다
조건을 만족하는 점의 집합이 바로 영역이나 다름 없으니까요
1은 여러 벡터의 시점을 한 점으로 통일하여 종점들을 원점에 대한 평면 위의 점으로 보는 관점인데
어차피 영역이라는 것은 조건을 만족하는 점의 집합이니까
1의 관점에서도 3의 관점에서도
시점만 일치하도록 조정하면 결국 3도 '원점과 영역 내의 점' 사이의 관계로 벡터를 바라보는 것과 같은 의미입니다
그런데 결국 이런 작업을 하기 위해서는 벡터의 시점을 자유자재로 가지고 놀고
벡터를 원하는대로 찢었다 붙일 수 있는 능력
'0'이 반드시 전제되어야만 합니다
따라서 벡터 문제를 푸는데 어려움이 있다면
반드시 중간 정도의 난이도 문제를 많이 접해서 벡터를 바라보는 관점 자체를 제대로 정립하는 과정이 필수적입니다
이번 풀이도 그렇고 저번 풀이도 그렇지만
이런 사고의 플로우가 기계적으로 흐를 수 있어야 벡터를 점으로 보든 영역으로 보든 할 수 있습니다
이제 다시 문제로 돌아와서
30번을 맞추기 위해서는 숨 쉬듯 할 수 있어야 합니다
팁 아닌 팁을 드리자면 문제에서 핵심으로 나타내는 벡터의 시점으로 모든 벡터의 시점을 조정하시거나
크기와 방향이 모두 정해진 벡터들은 따로 뜯어서 자기들끼리 미리 합쳐두시는 것이 좋습니다
주절주절 길게 써놨지만 결국 무슨 소리냐
시점을 보기 좋게 O로 옮기면 시점을 O로 하고 종점이 그림과 같은 삼각형 위의 점에 있다는 소리입니다
그리고 벡터를 영역으로 보기 위해서는 1의 관점이 필요하니까 시점을 저렇게 조정하는 것이 의미가 있겠죠?
이제 OD+OE와의 합을 처리하면 됩니다
위에서 언급했듯 OD+OE는 원점을 시점으로 하고 (3, 2)를 종점으로 하는 벡터인데
그 말인 즉슨 DQ-OP의 영역에 속하는 점을 모두 x축으로 3, y축으로 2만큼 옮긴 것과 동일하겠네요?
p.s. 바빠죽겠는데 언제 영역 하나 더 그리고 앉아있냐
뭣하면 시점을 옮기셔도 됩니다 ㅇㅇ
결론)
기하
외
않헤?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그것은인생 0
오오 끝없는방황길 오오 나의인생나의열정 지친내모습 오오 그것은인생 그것은외로움
-
묻히면 나 속상해...
-
현재 문학 박석준 선생님듣고 있고 독서 박석준 최인호 이원준(브크) 중에 고민입니다...
-
영어 영역 풀어보는 중인데 3월의 경향성이 이어졌는지 쉽지는 않아 보입니다. 이르면...
-
석준쌤 제게 힘을주세요
-
이번 5모 오답률 2위 (84.6%) 문제임. 되게 복잡해보이는데 간단하게 각...
-
늦게와서 재송람다 11
놀다왓음 나
-
평소에 국어 공부할 때 gpt한테 이것저것 물어보고 문제도 만들어달라고 하는데,...
-
한지 <--- 1
표본 어떤가여?
-
유나랑 로제같은
-
5모 ㅈ된듯 1
너무늦게잠
-
만점 목표입니다 0
생윤 vs 한지 ㅊㅊ해주세요
-
..ㅈ 시험을 떠나서 교양차원에서..
-
화작 3모61 5모74 인데 5모가 넘 쉬웟다고해서 성적이 상승햇다고 보긴 힘들것...
-
세타에대한 변수x 하나더만들고 어거지로 사인법칙써서 미분해서 dx/d세타 만들면둼
-
5모 30번 231129 확통 샤라웃 뭐지 ㄷㄷㄷㄷ 0
보자마자 생각났다
-
수학 0
4덮 국어~탐구까지 풀로 쳤을때 미적 81이었고 5모 오늘 학교에서 쳤는데...
-
메가 기준 45가 1컷이던데 표본 다 집계하면 실채점 결과는 1뜰만 하지않나요?
-
해보고 싶은 거는 하고 하고싶은게 아니잖아
-
초코빵 0
공부하기싫다 공부를 안한 과거의 나를 죽인다
신
창섭
기하업기하업
기하 화이팅
칼럼추
감사하옵니다
기출변형으로 인한 세 줄 요약 독해 날먹 실패...
본문에 있는 총론적인 내용이 핵심입니다
제가 벡터를 바라보는 시각을 그대로 적은것이니 한번 잘 읽어보시길 바랍디다
영역명이 뭔가 그럴싸하네
사실 무량공처말고 모름