[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다
길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다
24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다
메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면
이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면
CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?
얘랑
얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서
이를 시각적으로 나타내면
다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?
그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다
비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인생 첫 커뮤 4
오피지지
-
작수는 컨디션 난조로 개말아먹었고 현역 6모 13127 화미영화2지1 저게...
-
공통 뉴런 수분감 한바퀴 다시 돌렸는데(작년에도 뉴분감했습니다!) 기출 뭔가...
-
역사교사가 장래희망인 현 일반고 1학년입니다. 제가 어쩌다보니 전교 꼴찌에 가까운...
-
와 이 맛이야 0
가ㅛ데임ㅅ 와우 쉐엇 뻑킹 알코올 와우
-
암녕하세요 고3 학생입니다 제가 애니를 봤더니 이세계에는 예쁜 누나들이 많더라고요...
-
아까는 진짜 죽을 것 같이 힘들고 다 포기하고 싶었는데 지금은 언제 그랬나 싶네
-
길고양이 핥기 8
-
대학생 용돈 8
얼마 정도가 적당하다고 생각하시나요 전 30 받는데 좀 빡센거 같음
-
리트지문은 2
오답선지 설명을 모다겠다 머리가 뒤죽박죽이 되어버렷
-
내 첫 커뮤는 9
안알랴줌
-
251114 풀이 10
수능에서 나왔던 도형 문제입니다. 정답률은 메가 기준 확통 32% 미적 59% 기하...
-
2021 7모 29,30 아무리 선별이래도 30번을 안다룰 이유가 없는데...
-
저 사실 현역임 5
현역으로 입대를 한다네요
-
독서 고민 1
독서 읽을때 어떻게 읽어야할지 나만의 독해태도 이런것들을 정리해두다보니 읽을때 자꾸...
-
네이니가니ㅣ니니니가
-
같은 06인데 자괴감 들어 아
-
퇴근 6
담배한대의여유
-
배송 주소에 본가랑 자취방을 각각 등록해두고 번갈아서 배송시키면 배송지 변경으로...
-
맞팔구
-
나는 특정당하면 0
별거 없긴 해 ㅇㅇ
-
1. 현실 개인정보 올리지 말것 2. 다른 유저와 싸우지 말것 3. 다른 커뮤니티와...
-
뭐 어째 그런거지
-
난 특정당하면 4
어라
-
가슴은 화2 생2를 울부짖는다 하나는 지1 고정일거같은데 걍 하던 물1지1 할지...
-
기출문제 공부 어떻게 하셨나요? 자이,마더텅,한완기같은 기출 문제집사서 달달...
-
오르비 잘자요~
-
정법 버리고 갈려는데 내신베이스 있고 작수 뽑아서 풀었는데 30점 나옴 +정법 작수...
-
Buy. 1
sea U sun.
-
맞팔구 4
맞팔구
-
스카갈때
-
내적갈등이 상당 8
집가서 물리할까 지구할까
-
시대라이브라는게 2
인강마냥 내가 원할때 아무때나 들을수 있다는 거임 아니면 현강의 비대면 버전이라...
-
내일부턴공부를
-
인테르 0
4강 2차전 제발 이기자!!!!!!
-
어느 정도 맞으면 가나요? 높과는 성대는 글로벌리더, 한양은 정책 정도라 하면요...
-
당분간 정말 공부만 해야겠어요. 여러분도 파이팅 ٩(๑❛ᴗ❛๑)۶
-
재수해여하나?
-
이미지쌤 광클 0
저거 새로고침 하고 해야함? 아니면 그냥 대성앱에서 기다리다가 눌러야함? 스블 범준...
-
만표 오르겠는데 이거
-
이렇게 첫번째 풀이랑 두번째 풀이가 잘 알려진 정석풀이 같던데 이차방정식 인수분해...
-
10일 제한 이 씨발
-
한가요?? 마더텅이나 한완기같은 기출문제집들은 문제수가 엄청많던데 기출생각집 정도만...
-
잘 부탁드립니다 ^^
-
보카로곡이고 좀 유명한 곡이고 발매된지 1년 넘음 500덕
-
갑자기 5모 보려니까 쫄리네 내일 국어 영어 실모 풀고 자야지
-
6모 13
저랑 내기하실분 구해요 고대 세종캠이고 국수탐 평균 3등급이에요 지구 현우진 이원준...
-
하 서프 0
국어 영어 탐구 다 나쁘지 않게 봤는데 수학 개폭망함… 분명 시험 때 하나도 안...
-
생1 질문 0
원래 처음 개념하고 수특 풀면 한 단원 당 3시간씩 걸리고 그러나요? 개념하고...
-
메가기준 241128 37% 251128 35%
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
와 선생님 세ㄱ스 감사합니다 이차곡선 공도는 먹던맛이라 할만한데 벡터가 진짜 막막했거든요 잘먹겠습니다감사합니다
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
공간도형은 대체 어떻게 풀이하는 거였나요..??
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...