전 기 력
게시글 주소: https://orbi.kr/00072980233
전기력과 관련하여 궁금한 것이 생겼습니다.
위와 같이 초기에 x축 위에 전하량이 각각 +Q, +q인 두 점전하가 d만큼 떨어져 있는 모습을 상상해봅시다. 이때 우측 점전하의 질량은 m이고, 좌측 점전하는 제자리에 고정돼 있습니다. 우측 점전하는 초기에 가만히 놓인 상태이고요. 이런 상태라면 어떤 일이 발생할까요?
당연히 우측 점전하가 전기력을 받아서 +x 방향으로 쭈욱 운동을 하게 되겠죠. 여기까진 거의 모두가 알 겁니다.
그런데... 시간에 따른 우측 점전하의 위치를 식으로 표현할 순 없을까요?
이것이 저의 궁금증입니다.
굳이 시도하진 마시고요. 제가 해결할 거니까 여러분들은 편하게 구경만 하시면 됩니다!
우선 좌측 점전하가 원점 O에 고정돼 있다고 치고, 우측 점전하의 위치가 x라고 칩시다. 여기서 x는 시간 t에 따라 변하는 함수입니다. 그러면 t=0일 때 x=d이므로 x(0)=d 이겠죠?
우측 점전하엔 +x 방향으로 전기력이 작용하니, 그림처럼 F=ma 뉴턴 운동 공식을 적용할 수 있겠죠. 계산 편의를 위해서 저 짬뽕된 식은 k로 치환해둡시다. 그러면...
위와 같이 보기만 해도 역겨운 미분방정식이 튀어나옵니다.
심지어 비선형이어서 풀기도 개빡세 보입니다;;
하지만 저는 풀어냈습니다. 이거 하나 풀려고 온갖 X랄은 다 했거든요.
우선 x'=u로 치환하고, chain rule을 이용하여 위와 같이 하늘색 식으로 정리해줍니다.
그러면 위처럼 적분할 수가 있겠죠.
아까 u=x'이라고 치환했으므로, 다시 x에 대한 식으로 정리합시다. 여기서 왜 +가 붙냐면...
x'이라는 게, 속도를 의미하잖아요. 우측 점전하가 계속 +x 방향으로 이동해야 하는데, 그러면 속도가 -x 방향이면 안되죠.
초기에 우측 점전하를 가만히 놓은 것이므로 처음 속도는 0입니다. 이걸 이용하면, 상수 a도 구할 수가 있어요!
그러면 속도 x'의 식은 저렇게 나타남을 알 수 있습니다.
마음 같아선 속도만 구하고 나가고 싶은데, 저의 목표는 t와 x 사이의 식을 구하는 것이므로 계속 가보겠습니다.
아까 구한 x'의 식을 변수 분리를 통해서 적분을 시킵시다. 그러면 t에 관한 식에 적분상수가 이미 붙어있으므로, 우측 식에는 적분상수를 굳이 붙이지 않아도 되는데......
이거 적분하기 어려울 텐데....???
먼저 저 꼴이 보기 싫으니까, 치환적분을 통해 살짝 변형할게요. 그래도 적분하기 어려워 보입니다...
부분적분을 시도해봅시다. 그러면.....
분모의 제곱근 내부 식이 이차함수 꼴이므로 삼각치환을 써봤습니다. 다행히 적분 식이 깔끔하게 나왔네요!
secx를 적분하는 과정을 적어두고,
위 식에 정보들을 다 때려넣읍시다. p와 θ에 관한 식을 통해서 말이죠.
근데 저는 위 식을 좀 더 간편한 꼴로 고치려고 합니다.
위와 같은 쌍곡선함수들을 이용해서 말이죠.
여기서 저는 tanhx의 역함수를 이용할 겁니다. 왜냐하면 이 역함수의 로그표현이, 아까 구한 적분 결과의 식이랑 형태가 매우 유사하거든요.
참고로, 이 역함수의 정의역은 -1<x<1입니다. 로그표현으로 변환하는 과정에서 저 주황색 식이 튀어나오는데, 저 e2y가 무조건 양수여야 하는 조건에 맞는 x의 범위가 바로 -1<x<1이거든요.
그러면.... 위 적분의 결과가 우측처럼 tanhx의 역함수 꼴로 나타난다는 걸 알 수 있네요.
자, 거의 다 왔습니다.
처음 과정에서 x-d=p라고 치환을 했으므로 이 p를 다시 x에 대해 바꿔줍시다. 그러면??
짜잔~~~!!
응 아직 안 끝났어 저 적분상수 C를 처리해줘야지
x(0)=d 즉, t=0일 때 x=d라는 정보를 활용하면, C=0임을 알아낼 수 있어요....!!!
우측 점전하의 위치 x를 시간 t에 대해 나타낸 식은 저 보라색 식입니다. t=f(x) 꼴로만 표현할 수 있고 x=f(t) 꼴로 표현할 수가 없다는 게 좀 아쉽지만, 뭐 어쩌겠습니까...
속도 v=x'은 그림과 같이 위치 x에 대한 식으로 나타낼 수 있습니다. t에 대해 표현할 수 없으니까 함부로 나타내달라고 하지 마세요.
상수 k는 저 짬뽕된 식을 치환시킨 거고요.
시간 t에 따른 위치 x의 그래프는 저렇게 나타나고요.
...내가 물리학을 다루는 건지, 수학을 다루는 건지 헷갈린다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
님들 과외하려면 13
무조건 그 과목 1등급이어야하나요?
-
Day5 하는날에는 브릿지 같은거 같이 푸셨나요?
-
이거 풀 수 있는건가요? 'r s 높이 같다' 이런 조건도 없는데
-
최대반항 10
재수하기
-
6평 22423 3
매번 내가 어떻게 이 학교에 다닐 수 있는지 신기해하면서 다녀요
-
약간 술취한거 같기도 안 같기도.....ㅋㅋㅋㅋ
-
내신 버리고 정시파이터 하겠다면서 시험 93(1학기 중간)-> 8.5(2학기 기말) 받기
-
작년 3뜬 재수생인데요 기출분석을 한번도 안해서 기출 혼자 해보려고 시대인재북스에서...
-
요새 실검에 세지가 없던적이 없음...
-
와 이게 장난 아니구나…
-
봐버림 재밌어 보이긴하네..
-
최대반항 19
김치찌개 중짜에 에 밥 6공기먹기
-
초딩때 친구랑 집나간다고 햇다가 40분만에 집으로 다시 돌아옴
-
언성을 높임
-
엄마따라 사람이 화가 ㅈㄴ 많은건가 그냥 잘 모르겠다
-
세지 vs 사문 0
예체능이라 탐구 1과목만 해도 됨. 3모는 개념만 대충 돌리고 세지 4 사문 3...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ웃는게웃는게아니야...
-
드릴 미적 1
풀어보신 분들 2024,2025,2026 문항 많이 겹치나요? 난이도 순서도...
-
메이플 던파 로아 마비노기모바일 … 인생망한사람
-
책상 아래에서 연필색연필 반토막 내기 이거 왜 부러뜨렸어 라고 물어보셔서 모르쇠 시전했어요
-
기하 안 해보신 분들을 위해서 간단하게 가이드를 적습니다. 우선 기하는 크게 세...
-
도쿄대학교 가서 너의이름은 타키쿤처럼 사는것임
-
밸런스 좋음
-
마작하는사람 2
리치마작해보려는데재밌나요 실력겜이아니고운빨겜이라는데
-
어떻게하는거냐고
-
지하철타고등교하는게 로망임
-
국어 인강 강사 3
국어 인강 강사 추천해주세요 ot 들은것중 괜찮은 선생님들 문학-정석민 김젬마...
-
오르비 잘자요~
-
공통2틀 미적1틀 88인데 무보정 보정 등급 어캐됨?
-
왜 메디컬 갈려고 하는지 알겟음... 음 고민이네
-
요즘은 왤케 입맛 돌지;; 저녁시간되면 학원근처 맛집투어 하는 낙으로 공부하는듯.
-
아직 좀 있어서 다시 온거지만 그래도
-
영화작가가 되기 위해서 시나리오를 쓰는게 왜 예기사회화가 아닌가요 ㅜㅜ
-
내일일어낫는데 2
지각삘이면 출근안함 천만이 가로막아도 나는 자리라
-
요즘에 아아 연하게 먹고 있는데 생각보다 괜찮네요 허허
-
자자
-
수1은 완강때렸고 수2는 적분남았는데 미적만 스블듣고있음. 근데 김범준...
-
더 열심히 해야될듯
-
노베 공부쉬는날 0
수능공부 시작한지 얼마안된 현역노베인데 노베인만큼 심각성을 느껴서 매일 8시간씩...
-
흠.... 우짜지
-
릴스떠서 보는데 개웃기네 ㅋㅋㅋㅋ
-
내신 2.6인데 교과쓰면 붙음? 모 아니면 도 느낌으로 경제학과 쓰려고
-
일기 봣는데 개 패고 싶네 이게 벌써 두달도 더 전이다 ㄷㄷ 수힉 풀기 싫어 보람찬...
-
열심히 풀었는데 검토진의 논평? 거기에 한 30분 easy 박혀있으면 ㅅㅂ 이정도는...
-
ㅇㅈ 6
처음 글쓰네요 반갑습니다
-
문디컬은 모르겠고 12
자신이 문디자슥이면 개추ㅋㅋ
-
스칸데 서로 속닥속닥하다가 다른 사람도 속닥속닥하니까 점점 시끄러워지다가 스카 지금...
-
문디컬 질받해봄 7
모 한의대 재학중 딱히 올 생각 없었는데 어쩌다보니 왔네요 공부는 아직 적응 못함 과생활은 매우 굿
-
오랜만 1
음
으아앙

멋있긴 한데 왜하는거나도 저런거 하고 싶다 (대학 보내주세요)