전 기 력
게시글 주소: https://orbi.kr/00072980233
전기력과 관련하여 궁금한 것이 생겼습니다.
위와 같이 초기에 x축 위에 전하량이 각각 +Q, +q인 두 점전하가 d만큼 떨어져 있는 모습을 상상해봅시다. 이때 우측 점전하의 질량은 m이고, 좌측 점전하는 제자리에 고정돼 있습니다. 우측 점전하는 초기에 가만히 놓인 상태이고요. 이런 상태라면 어떤 일이 발생할까요?
당연히 우측 점전하가 전기력을 받아서 +x 방향으로 쭈욱 운동을 하게 되겠죠. 여기까진 거의 모두가 알 겁니다.
그런데... 시간에 따른 우측 점전하의 위치를 식으로 표현할 순 없을까요?
이것이 저의 궁금증입니다.
굳이 시도하진 마시고요. 제가 해결할 거니까 여러분들은 편하게 구경만 하시면 됩니다!
우선 좌측 점전하가 원점 O에 고정돼 있다고 치고, 우측 점전하의 위치가 x라고 칩시다. 여기서 x는 시간 t에 따라 변하는 함수입니다. 그러면 t=0일 때 x=d이므로 x(0)=d 이겠죠?
우측 점전하엔 +x 방향으로 전기력이 작용하니, 그림처럼 F=ma 뉴턴 운동 공식을 적용할 수 있겠죠. 계산 편의를 위해서 저 짬뽕된 식은 k로 치환해둡시다. 그러면...
위와 같이 보기만 해도 역겨운 미분방정식이 튀어나옵니다.
심지어 비선형이어서 풀기도 개빡세 보입니다;;
하지만 저는 풀어냈습니다. 이거 하나 풀려고 온갖 X랄은 다 했거든요.
우선 x'=u로 치환하고, chain rule을 이용하여 위와 같이 하늘색 식으로 정리해줍니다.
그러면 위처럼 적분할 수가 있겠죠.
아까 u=x'이라고 치환했으므로, 다시 x에 대한 식으로 정리합시다. 여기서 왜 +가 붙냐면...
x'이라는 게, 속도를 의미하잖아요. 우측 점전하가 계속 +x 방향으로 이동해야 하는데, 그러면 속도가 -x 방향이면 안되죠.
초기에 우측 점전하를 가만히 놓은 것이므로 처음 속도는 0입니다. 이걸 이용하면, 상수 a도 구할 수가 있어요!
그러면 속도 x'의 식은 저렇게 나타남을 알 수 있습니다.
마음 같아선 속도만 구하고 나가고 싶은데, 저의 목표는 t와 x 사이의 식을 구하는 것이므로 계속 가보겠습니다.
아까 구한 x'의 식을 변수 분리를 통해서 적분을 시킵시다. 그러면 t에 관한 식에 적분상수가 이미 붙어있으므로, 우측 식에는 적분상수를 굳이 붙이지 않아도 되는데......
이거 적분하기 어려울 텐데....???
먼저 저 꼴이 보기 싫으니까, 치환적분을 통해 살짝 변형할게요. 그래도 적분하기 어려워 보입니다...
부분적분을 시도해봅시다. 그러면.....
분모의 제곱근 내부 식이 이차함수 꼴이므로 삼각치환을 써봤습니다. 다행히 적분 식이 깔끔하게 나왔네요!
secx를 적분하는 과정을 적어두고,
위 식에 정보들을 다 때려넣읍시다. p와 θ에 관한 식을 통해서 말이죠.
근데 저는 위 식을 좀 더 간편한 꼴로 고치려고 합니다.
위와 같은 쌍곡선함수들을 이용해서 말이죠.
여기서 저는 tanhx의 역함수를 이용할 겁니다. 왜냐하면 이 역함수의 로그표현이, 아까 구한 적분 결과의 식이랑 형태가 매우 유사하거든요.
참고로, 이 역함수의 정의역은 -1<x<1입니다. 로그표현으로 변환하는 과정에서 저 주황색 식이 튀어나오는데, 저 e2y가 무조건 양수여야 하는 조건에 맞는 x의 범위가 바로 -1<x<1이거든요.
그러면.... 위 적분의 결과가 우측처럼 tanhx의 역함수 꼴로 나타난다는 걸 알 수 있네요.
자, 거의 다 왔습니다.
처음 과정에서 x-d=p라고 치환을 했으므로 이 p를 다시 x에 대해 바꿔줍시다. 그러면??
짜잔~~~!!
응 아직 안 끝났어 저 적분상수 C를 처리해줘야지
x(0)=d 즉, t=0일 때 x=d라는 정보를 활용하면, C=0임을 알아낼 수 있어요....!!!
우측 점전하의 위치 x를 시간 t에 대해 나타낸 식은 저 보라색 식입니다. t=f(x) 꼴로만 표현할 수 있고 x=f(t) 꼴로 표현할 수가 없다는 게 좀 아쉽지만, 뭐 어쩌겠습니까...
속도 v=x'은 그림과 같이 위치 x에 대한 식으로 나타낼 수 있습니다. t에 대해 표현할 수 없으니까 함부로 나타내달라고 하지 마세요.
상수 k는 저 짬뽕된 식을 치환시킨 거고요.
시간 t에 따른 위치 x의 그래프는 저렇게 나타나고요.
...내가 물리학을 다루는 건지, 수학을 다루는 건지 헷갈린다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
카트 어렵네… 1
챌린저분 만나서 버스타다가 너무 미안해서 ㅂㅂ 박고 탈주함
-
영양군 건은 자숙기간도 가졌고, 사과도 했고, 기부도 하고, 홍보영상까지 찍었는데...
-
6시에 일어나야됨
-
사문 해야하는데 0
수학이 너무 재밌어서 결국 안하게 됨
-
자다깼는데 0
다시못자겠다 뭐하지 ㅋㅋㅋㅋ
-
피치 슈퍼크라운을 쿠파가 쓰면 피치로 변하니까 마리오랑 알콩달콩 지낸다 !? 쿠파...
-
심찬우 문학 2
심찬우 쌤 문학 채화하기 너무 빡센데 여기서 체화 하신 분 계신가요?…
-
뉴런 다 듣고 나서 띰주제별 핵심 실전 개념들만 정리한 문서 만들었는데, 다 만들고...
-
이때부터 무등비,삼도극 같은 국밥유형 빠지고 가형시절엔 21,30번이던 여러가지...
-
대입원서 접수 대행 유웨이·진학, 계약 대가로 11년간 대학에 96억 금품 제공 1
인터넷 대입원서 접수 대행서비스 계약을 따내거나 유지하기 위해 10년 넘게...
-
한의학 비과학 맞는데 95
일단 학문자체가 해부학적 지식없는 과거 동양에서 한의술을 귀납적으로 설명하기위해...
-
강의 이거저거 찍먹하는 애들은 수능날 거진 실패한다고 보면 됨 현역3이다가...
-
대치동 학원에서 도움받을수 있나요?
-
안녕하세요 team AXIOM입니다 오늘은 7세고시 4세고시에 대해서 말해볼까합니다...
-
아 나 바본가 2
잡담글만 올리다보니 질문글에도 잡담태그달고있네
-
특히 술자리에 존예녀 있으면 입이 안 떨어진다는거임....
-
근데 귀납 그 자체인 과학 들먹이면서 한의학 까는건 좀… 1
과학도 막상 보면 이런거는 이렇다고 가정하니까 맞아 떨어지더라 ㅇㅈㄹ하던데.. 흠?
-
오늘 이거 뿌리고 감
-
이과고 확통같은 과목 진짜 싫어서 어차피 수능은 미적 기하 볼 고2인데 내신...
으아앙

멋있긴 한데 왜하는거나도 저런거 하고 싶다 (대학 보내주세요)
중학생 때 가져본 의문인데.. 굉장히 복잡한 미분방정식이었군요 ㅋㅋ