[칼럼...?] 가볍게 훑는 28 예시 공통 총통
게시글 주소: https://orbi.kr/00072918830
안녕하세요, 평소에 방구석에서 출제만 하는 출제자입니다
갑자기 자다 일어나서 28 예시가 보이길래 당황하고 다 풀었는데,
좋은 내용들은 이미 많이들 올리실 것 같아서
저는 야매로 제 생각만 던지고 튀겠슴다
5번: 더 쉽게 풀 수 있어서 너무 감사한 문항
5번 문항을 풀이하다보면 그대로 전개하거나 곱 미분법을 사용할 수도 있지만,
우리가 교과서에서 가장 먼저 배우는 미분계수의 정의를 활용하면 더 빨리 풀 수 있어요
f(-1)=0이니까 바로 f(x)에 (x+1) 인수가 있는 것을 눈치채고
와 같이 구하면 정답이 바로 나옵니다
251105, 250905
위의 기출처럼 원래는 "미분"해야 풀 수 있는 문제들로만 나왔는데,
저렇게 깔끔하게 인수 정리가 되어서 감사를 해야 합니다
11번: 접선 주제는 예시문항 특?
뭐 이 문제는 저는 그냥 풀기는 했는데
아래 문제가 떠올라서 가져와봤습니다 ㅇㅇ
22 예시문항 9번
이정도면 평가원도 여기에 어떤 취향이 있다던가.. 뭐 그런
14번: 귀납적으로 정의된 등비수열의 합?
이 문항 풀때는 그냥 머... 정방향 역방향 다 해서 a1, a7 구하고 풀었는데,
음.. 뭔가 n >= 4에서 식이 익숙하더라고요? ㅇㅇ
자 예를 들어서 공비가 r인 등비수열 b_n이 있다고 합시다? 그리고 b1부터 bn까지의 합을 Sn이라 할 수 있겠죠?
그러면 이 식이 바로 떠오르게 됨
...? 이거 뭔가 익숙한데?
여기다가 n >= 4에서만
라 하고 대충 눈치채서 r=k, b1 = 2라 생각하면
a_n이 2, 2k, 2k^2, ... 의 합임을 알 수 있게 됨다 ㄷㄷ
그러면 a_1=2+6k이니까 a1=a7은
로 바로 나타낼 수 있으니까 저기서 인수분해하고 뭐하고 이것도하고 저것도 하면 구할 수 있습니다 ㅇㅇ
뭔가 이런 문제는 미적분 급수로 내도 좋을 것 같고..?
15번: 위치 -> 속도 -> 가속도 는 평가원 트렌드임?
이 문항은 다들 잘 푸시겠지만, 각 위치를 한 번 미분해서 속도를 구한 이후, 속도에 대한 조건을 풀고, 이를 바탕으로 시각을 구해서 가속도를 구하는 문항입니다
근데.. 음 이 전개 뭔가 비슷한데요?
251111, 250911
이 두 문항 보고 위에 문항 보면, 풀이가 다들 비슷합니다
1. 위치의 식을 미분해서 속도를 구한다
2. 조건에 충족하는 시각을 찾는다
3. 그 다음에 속도를 또 미분해서 가속도를 찾는다
특히 속도, 가속도 문항 특이 "조건에 충족하는 시각"을 찾는 것인데,
기존에는 이거를 바로 속도 함수를 줘서 구하게 하는 느낌이었다면,
요즘에는 위치를 줘서 구하도록 하는 느낌...? 인 것 같아요
그리고 자꾸 가속도 물어보게해서 한 번 더 미분시키는 게 킹받네요
16번: 요소는 많고 케이스 분류하면 풀이는 쉬운 문항
이거 보면 교육청틱 하다라고 느껴지는 이유가 요소가 너무 많아서라고 생각합니다
1. 두 자연수 a, b
2. 절댓값 있음
3. 직선과 만나는 점의 개수 10개
4. 순서쌍 (a, b)에 a+b의 최대/최소 있음
그니까 각각이 다 우리한테 기출로 익숙한데 (떠오르는 기출이 너무 많을 것 같아서, 안 가져왔습니다)
이거를 막 버무려버린 것입니다,,
그래서 볼 때 기출 요소는 너무 많고 정작 풀이는 어렵지가 않아서 평가원틱하지 않다고 느끼는 것이죠
+ 그리고 우리는 눈을 째려봐서 어차피 a가 자연수이니까 x가 단위원 전체를 a번 훑는다고 생각하고 문제를 풀 수 있습니다.
다시 말해, y=1과 만나는 교점의 x좌표를 안 구해도 되는데, 굳이 구해야 할까요...?
250920
당장 작년 9평만 봐도 굳이 x좌표의 값을 다 안 구해도 풀이는 삼각함수 문제가 나왔습니다
17번: 눈치것 직선 띡 그려서 삼각형 PQR 넓이 바로 구할 수 있습니다
자세하게 보면 P, R은 모두 x=2 위의 점입니다
그러면 f(x)랑 OR, PR로 둘러싸인 부분을 S라 하면
삼각형 PQR 넓이는 대충 Q x좌표랑 P y좌표 다 구하면 바로 삼각형 밑변 x 넓이 사용해서 구할 수 있으니까
이러면 더 구하기 쉬워진다 생각합니다
18번: (가) 조건을 항상 명심하면 풀이하기가 더 쉬워짐
이 문제는 어렵기도 하지만, 헷갈릴만한게 (가) 조건에서 두 조건이 나오기 때문입니다
1. f(x)=x 의 실근 2개
2. g(x)=x 의 실근 2개
그리고 눈치것 (나) 조건 슬쩍 보면 f(0)=g(0)=0이니까 g(x)=x인 x =/= 0인 실근이 있다는 거 구하면 나머지 풀이는 비교적 더 쉬워질 것입니다
이 문제도 그렇고 30번도 그렇고 직선 y=x를 중복적으로 넣은 것을 보면, 평가원이 그냥 문제 은행에서 빼온 것 같다는 강력한 의심이 듭니다;;
19번: 원이라는 조건의 특이성
이 문항은 혼란스럽기 딱 좋은 것이, 문제 조건 따라서 도형에 선분 PB 딱 그엇는데, 갑자기 Q를 봐야 한다는 것입니다,,
이와 비슷한 느낌의 문항이 기출로도 있었는데,
230913
이 문항도 보면 점 D를 파악하기 위해서는 결론적으로 선분 OD를 그어야 합니다.
마찬가지로 이번 문항도 점 Q를 파악하기 위해서는 선분 AQ를 그어야 합니다.
생각보다 보이는 거는 작수 14랑 비슷한데, 오히려 내용적으로는 위의 기출과 비슷한 듯 합니다
22번: 3점 킬러
왜 갑자기 이러시는 지는 모르겠는데, 생각보다 3점 초반인 22번 치고는 어려운 문항을 가지고 오셨더라고요?
심지어 개인적으로는 23번보다도 더 어려워 보입니다
230621
원래 특히 지수로그 부분은 낼만한 소재가 교과내로는 거의 없어서, 요소를 무조건적으로 추가하게 되는데,
21번처럼 자연수, 정수 조건을 추가하는 경우도 상당히 많습니다.
이번 문항도 그런 케이스이긴 한데,,, 이게 22번인지는 모르겠네요
24번: 점점더 아이디어를 발전시키면 충분히 4점도 될 가능성이 언젠가는 있겠죠?
문항 자체도 구하는 값이 특이해서 재미있지만, 뭔가 아래 기출까지 보니까 이제 수열의 합만 물어보는 문항이 지속적으로 나오는 것 같습니다
251118, 250918
위의 두 문제도 보면 실제 수열 a_n을 구하는 느낌보다는, 조건을 잘 조합해서 정답을 도출하는 느낌입니다.
그런 면에서 보았을 때 이런 문항들이 앞으로는 조금 더 임팩트를 줄 수도 있지 않나라는 생각도 듭니다.
27번: 지그재그로 수열 a_n의 정의 방식이 기출과 비슷한 느낌
(문제가 너무 길어서 잘랐습니다,,)
이 문항은 다른 것보다도, 지수에 있는 수열이 등차/등비 라는 점에서 아래의 기출과 조금 비슷하지 않나라고 생각합니다.
게다가 두 곡선을 활용해서 지그재그로 계속 a_n+1, a_n+2, ... 이 정의되는 것도 그렇고요
230913
28번: 함수 f(x) 안 쓰잖아? 그냥 바꿔 그럼
조건들 보면 결국 문제에서는 함수 f(x)에는 큰 관심이 없다는 것을 깨닫게 됩니다;;
그러면 오히려 기회로 바꾸어서 다음과 같은 식조작을 할 수 있습니다
그러고 문제를 보면 문제의 조건이 더 쉽게 느껴진다는 기분좋은 생각을 할 수 있습니다
30번: 얘도 함수 f(x) 안 쓰잖아? 얘도 바꿔 그럼
x<=0 에서 함수 f(x)의 역함수는 이렇게 나옵니다
근데 어차피 문제에서 함수 f(x)가 직접적으로 쓰이기보다는.. f(x)=x만 유심히 잘 관찰하면 되는 거 아닌가요?
그러면 우리 역함수의 정의는 알고 있으니까 x<=0에서의 식을 위의 식으로 바꾸어서 그래프를 아래와 같이 그리면 더 편합니다!
(사실 더 나아가서 점만 찍어도 됩니다)
이러는 과정에서 평행이동, a>0, a>b 의 명제들을 자연스럽게 떠올리실 수 있으실 것입니다
사실 이렇게 y=x를 다루는 문항은 기출로도 많이 등장한 소재이죠?
250914
이 친구도 y=x 기준으로 문항들이 전개가 되네요
사실 아까 언급한 것처럼 지수로그에는 출제한 것이 많이 없어서, 역함수는 계속 단골 주제가 되지 않을까 싶습니다
총평: 뭔가 특이하게 이상했던 시험지
이 시험지.. 뭔가 특이합니다
공통에서는 뭔가 새롭고 굵직한 알맹이가 없으면서도 변별은 잘 되는 것 같은 시험지였습니다
문제지 전체의 흐름은 예단할 수는 없어도, 개별 문항들을 통해 평가원에서 어떤 흐름의 출제가 되어가고 있는가는 알 수 있는 문제지인 것 같습니다
생각보다 야매로 하는 칼럼도 어렵네요,, 진짜 칼럼러 분들 대단하십니다
앞으로 6월 전에 모의고사를 만들 것 같은데, 그것도 만관부임다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너무 행복한 순간들이었다는걸 너무 늦게 알았어
-
흐흐
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
자꾸 화학쌤이 30점대 나와도 3등급이라고 화1보다 훨씬 깔끔하다고 얘들 회유해요
-
푸앙님 보낸 그곳에 아직도 난 서 있는데
-
운동하고 공부하고 집 왔다갔다하고 밥 먹고 병원가고
-
전라도 가시내 너의 나라로 돌아가라ㅋㅋㅋㅋㅋㅋ 지금 절반이상 풀었는데 이번 수특에...
-
화2하라고
-
[칼럼대회] 결과 발표 24
안녕하세요, 물개물개입니다. 많은 분들께서 기대해주신 칼럼대회의 결과가 드디어...
-
일단 학생증을 학과보이게 찍어서 달라는게 제일 기분나쁘고 큐브 광고하는걸 보면 그냥...
-
잘자라잉 11
잘자요잉
-
뻘글) 개구리 6
-
결과:중학교 168등 졸업 고1 내신 좆망
-
컴공 무물 10
시험기간 도중에 잠깐 질문 받아볼게욥 궁금하신 거 있으시면 말씀주셔영
-
푸하하하하하
-
뻘글) 거북이 8
-
장재원 선생님 수업 들으면서 강기원 선생님 vod 를 샀는데 장재원 선생님 교재는...
-
올오카 끝나면 0
재수생 작수 4 올오카 끝나면 tim 하면서 기출문제집 조금씩 풀어도 되나요?...
-
흐흐 6
해원쌤 교재는 실물로 푸러야함다른건
-
22지2를 보면 1
성악설을 믿게됨
-
밤새기 1
공부
-
그거 15번인가부터 20번까지 거를 타선이 없이 전부 빡빡함...
-
공부한지 3달 됬는데 여태까지 옛날 기출 풀어오고 있는 중이었는데 아무리 과탐이...
-
2309 2311이랑 사설물2보면 평가원이 마음만 먹으면 무조건 해결가능인데 올해 폭탄 터질지도
-
스스로를 개선시키기 환경 개선하기도 좋지만 그것보다 근본적으로 나 자신을 바꾸어야...
-
비역학도 좀 하라구여? 11
넹..
-
88... 진짜... 겨울방학때부터 지금까지 변한게 없어 변한게
-
250423 공부기록아침에 늦게 출근해버려서 시간이 좀 짧다. 내일은 더 일찍출근 하는 걸로
-
2027학년도 숭실대 전형계획 발표 : 네이버 블로그
-
코팩하는중 10
관리하는 여자 어때여
-
이건 머 장발도 아니고 칼단발도 아니고 거지존일때랑 차이를 모르겠던데
-
뻘글) 타조 8
-
점수가 고등학교 입학하고 3년째 제자리라 문풀하는게 의미있을까 싶음 근본적인 문제가 있나
-
a,b를 ㄱㄴ중에 하나로 잡고 귀류법 쓰는거 말곤 다른 풀이가 없을까요? 찍는다면...
-
부모님 모르게 정신과 10
남들에 비해 좀 쉽게 의기소침해지거나 극단적으로 판단하는 습관이 있음 근데 이건...
-
히히
-
여자면 국어/ 영어가 제일 하기 수월하나 사실 난 국어가 더 수월할듯
-
혼자 수학풀거나 시대인재 복테같은경우는 잘풀고 잘봤었습니다. 근데 진짜로 수학 모고...
-
정의,공정,국민의식 등이 가장 잘되어있는 나라는 어디임? 5
그나마?? 유럽임? 진지하게 탈조 할라고
-
나우나우나우
-
[기출 복습] 25학년도 6월 모의평가 공통+미적 10
기출복습으로 풀어봤는데 더 좋은 풀이 있으면 알려주세요
-
자이나 마더텅 모의고사 회차별로 모아진거 사려고 하는데 문제 지문들이 기억날 거...
-
여자와 밥먹는 방법 11
아니 잠깐 조교 했었는데 애들한테 밖에서 마주치면 밥 사주겠다고 약속했는데 진짜...
-
오늘따라 여친이 좀 힘든가봐요
-
아이큐 검사 하고 뽑아야되는거 아니냐 아파트 사게 한다고 내놓은 정책이 ㅅㅂ 에휴
-
만난적은 없었어~~~~ 니가 뭔데 날아프게 하니 너때문에 상처되버린 내 사랑 이제...
-
님들 메이드로 전직하는게 더 나은 인생일수도 있음 ㄹㅇ
-
생윤 강의가 너무 길었어요 삶과 죽음윤리 ㅋㅋ..기하도 왜인지 모르겠는데 오버랩 꽤...
첫번째 댓글의 주인공이 되어보세요.