수학 잘하시는분들 이런거 머리로 스케치 하시나요
게시글 주소: https://orbi.kr/00072878939
수열이라 일단 써보면서 가나요?태도 배우고싶음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
갑자기 존나 물기있는 이대녀 된것 같은데 우짜노;
-
지방 일반곤데 애들 김범준 왜이리 좋아하냐? (무슨 비하의 의도 그런게 아니라 그냥...
-
조정식T 괜찮아 문장편, 어휘편 교재 작년이랑 많이 다른가요? 1
작년 교재 그대로 쓰려고 하는데, 내용이 많이 추가되거나 제거 되었을까요?
-
친구가 잉크 뿜는 캡 돌렸는데 내가 아직 사용법이 미숙치 않아서 진짜 나왔나...
-
와이파이 겁나 느림...
-
적어도 수1은 고2기출 풀어보는거 정말 좋다 생각함 1
이전부터 강조한건데 수학1은 과목 자체가 살짝 old한 느낌이 있어서 다소...
-
이거 하나 틀렸는데 정답률 80퍼짜리 문제라 해설도 자세히 없고 이해도 안돼요.....
-
역대급 레전드를 봐버렸다 아니 시발... 저게뭐야 소리밖에 안나오네
-
전국 날씨 예보 보는데 내가 어릴때 보던 익숙한 대구 땅모양이 아니라 위에다 가발...
-
무한도전급임
-
사회(기업)는 아직 네가 어떤 능력을 가진 상태인지 모른다. 2
그렇기에 아직 못 믿겠으니 능력을 발휘하여 성과를 보여준 후 권리를 요구하라는...
-
눈치게임 실패한건가 혼자 제적당한 한 명은 어쩌냐
-
예를 들어서 도형 문제면 일단 처음에 이 길이랑 이 길이 구하고 그다음에 이 각...
-
나트륨 크래프랑 칼륨 크래프랑 교차하는 부분까진 막전위가 증가해야 하는거 아닌가요...
-
어지럽네.. 배고플때 자서 그런가
-
딸깍 2
딸딸딸이딸깍
-
낫나요? 24 25 둘다 화2가 물2보다 표점 높았는데 개인적으론 화2보단 물2가...
-
이미 입영통지서 나옴 ㅋㅋ 어차피 될 가능성 없으니까 그냥 빨리갔다오는게 답임
-
SKT “해킹으로 가입자 유심정보 유출 정황”…당국, 비상대책반 구성 1
SK텔레콤이 해킹 공격을 받아 이용자 ‘유심(USIM) 정보’가 유출된 정황을...
-
뒷북쳐서 올리는 28학년도 수능수학 30번 예시문항 풀이 1
허수인 강사가 밑이 같은 로그지수함수 관계를 이용하지 못하였는 데 이제 보이네요...
문자로 쓴 후 안 되면
직접대입해서 관찰
수열파트는 항상 이렇게함
문자로 둔다는게 일반항처럼 미지수 설정 말하시는건가
답 7인가요
암산뭐임
땡땡
24인가
머리로 하니까 잘 안되넹
맞음 근데 머리로 어케함 시팔??
24?
나조건 해석한 뒤에는 걍 귀납적추론때림

아니..진짜 뭐임 벽이다 벽정보가 많은 항부터 출발하는 게 맞는데
얜 딱히 가 조건으로 만들어낼게 없어보이니
나 조건 보고 a_1 k로 임의 지정하기 ㅋㅋ
지리네요..
이창무 쌤 심화특강도 한번 들어보셔요ㅋㅋ
수열푸는거보면 지림 ㅋㅋ
전 그정도 레벨 하지도 못할듯 ㅋㅋㅋㅋ
진짜 이런건 그냥 손도 못대겠네
(가)조건을 보고 4항부터 들어가서 역추적을 해볼까 하고 봤을 때 부호땜에 굉장히 귀찮아질거라는 게 예감이 됨+합과 항의 관계가 매우 특수
-> 정추적으로 규칙 파악
(가) (나)를 만족하려면
-32 16 8 4 2 1 1/2 ••••••
-32 -16 -8 -4 -2 -1 -1/2 ••••••
이런 느낌인가
a4+ a6 보고 4+1 생각남
암산 불가능하진 않은 듯요
24?
그냥 읽고 아 점점 작아져야지 절댓값을 만족하겠네
생각하고 풂요

부럽다sn=an or sn=-an sn=0이 아니니까 n>=2에선 2sn=sn-1이겠구나하고 쓰윽 풀것같네요
(나)보고 a[1] < 0, n ≥ 2에선 a[n]이 공비 1/2인 등비급수인 거 알아챈 다음에
(가)보고 a[4] = 4, a[6] = 1 박은 뒤 |a[1] + a[3]| = |(-32) + 8| = 24 이렇게 풀은 듯

지립니다이진법 떠오름
뭔가 1 -0.5 -0.25.... 넣고 싶게 생겼음
배율 조정하고

벽이다 벽an sn 같이 주어졌고 sn을 an에 대해 나타내자니 나 조건의 절댓값이 거슬림->an+1 을 sn+1 - sn 으로 나타내서 풀되, an에 대해 주어진 모든 조건들을 sn에 대해 바꿔서 풀면 끝
암산 24
x축 그어놓고 a1부터 어디쯤 위치해야 야무질지 대가리 열심히 굴리면됨
걍 |S[n]|=|an[]|=|S[n]-S[n-1]| 인데 S[n-1]=/0이니 S[n]=/S[n-1] 이므로 서로 부호 다르다는걸 이용해서 식계산할듯
윗분들보면 고능하게 잘 푸시는데
그냥 정석적으로 an=sn-sn-1로 바꾸고 규칙파악한다음
a4혹은 a6를 미지수로 잡는다 해서 가 조건을 풀 수 있는게 아니라는걸 파악하고 a1을 미지수로 잡아야겠다 생각하고 계산몇번하면 해결 할 수 있을 듯요
1.Sn an관계식섞여있을땐
an을 Sn-Sn-1로 바꾸는게 유리하다
2.주어진 항 간 관계식에서 어느하나를 미지수로 잡아 해결할 수 있는 지 확인 -> 안되면 정추적/역추적 방향 결정하기
이정도로 생각하시면 좋지 않을까요..?
저도 그리 잘하는편은 아니라..ㅎㅎ
감사합니다!
문제 좋네요
배울점이 있는 문제인듯
뒷북해설 해드리자면
1. 구하는 값을 본다 -> 수열의 특정항 -> 수열의 정의가 궁금하다
2. 조건을 보니 (가)조건이 '특수'한 트리거고 (나)조건이 수열의 '일반'적 정의이다. (나)를 해석하고 (가)를 (나)에 먹이는 방향으로 잡는다
3. (나)조건 해석을 시도한다. 뭔가가 같지 않다는 조건과 뭔가가 같다는 조건이 있다. 수능 문제는 하나의 정답을 구해야 한다. 그렇기에 등식이 중요하다. 등호가 없는 부등호나 같지않다의 경우는 실수의 '연속적인' 후보들 중에서 딱 하나의 답을 특정해주지 못한다. 따라서 '이산적인' 케이스를 배제하는 근거가 되는 것이 유일한 역할이다. 그렇기에 등호가 없는 부등호가 부등식이 나오는 경우 '케이스'에 염두를 둔다.
그러고 보니 오른쪽 등식에 절댓값이 있다. 절댓값이 있는 경우 취해야 할 몇가지 필연적인 태도들 중 하나는 케이스를 나누는 것이다. 같지않다 조건이 뭔가 케이스를 지워주지 않을까 하는 생각을 갖고 절댓값 조건을 바라볼 수 있다.
그리고 Sn과 an의 관계식이 있는데, 웬만하면 둘 중 하나로 통일시키는 것이 좋다. 우변을 Sn–Sn-1로 바꾸고 싶다. 그 전에, n=1의 경우 아무런 정보를 주지 못하므로 등식의 성립범위를 n>=2로 제한해도 동치이다. 그리고 케이스를 나누면, n>=2에 대해 Sn-1=0 혹은 Sn=1/2Sn-1인데, 전자의 경우 왼쪽의 같지않다 조건에 의해 깔끔하게 지워진다. 분류기준을 놓치지 않는 상태로, Sn이 등비수열이니 귀납적 정의를 일반항으로 바꿀 수 있고, Sn의 일반적 정의를 알고 있으니 an의 일반항도 구할 수 있다.
4. 이제 해석한 정보에 트리거 역할인 (가)를 집어넣으면 모든 항이 결정되고 구해야 하는 값도 구할 수 있음
뒷북해설이라 작위적이긴 한데 제가 강사입장이라면 이렇게 해설했을듯
자세한 풀이 감사합니다 다시 풀어볼게요 ㅎㅎ