수학 잘하시는분들 이런거 머리로 스케치 하시나요
게시글 주소: https://orbi.kr/00072878939
수열이라 일단 써보면서 가나요?태도 배우고싶음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고딩때 공부 못하던 친구 내가 존나 학원 같이가자고 꼬드겨서 학군지 학원가...
-
변한건 너야 변한 널 대하는 내 태도가 바뀐거야
-
뭔가 계속 그래야할거같다고 느낌 일을 빡세게 두개하라는게 아니라 인스타나 블로그나...
-
그걸 참고 들어줬으면 좋겠어
-
잠을 자야해요 8
좋은 밤 되세요오..
-
문학청년 있음? 4
소설책 추천 좀 해주
-
생활패턴 ㅁㅌㅊ 16
2-3시취침 6시기상 1일 양치3회 샤워2회 화장매일아침함
-
사실 시험만 아니면 하루는 째도 되긴 하는데
-
남들 다 안 하는 걸 내가 먼저 하기 시작했다면 나는 선두자라고 마냥 내세울 게...
-
재밋을듯
-
잠좀깻다 0
첫시험 다뒤졋다 ㅋㅋ
-
씻긴씻는데 깨끗히 안씻더라
-
허걱슨 ㄷㄷ 비누냄새난다고 F맞겠네
-
느와르물 틀딱 애니들 다 수작 이상인데 아무튼 ㅈ세계물이 문제임 최신 애니 진짜 볼게 없어
-
의지박약이라 일어나자마자 씻어야되는데 쉽지 않네..
-
토토 간접체험한듯.. 확 빠져듬 좀만 더하면 될것 같아서 계속 박음..
-
노베 도형 강의였었나 비율 딱딱 맞는거에 희열느끼셨는지 흐흫하면서 설명해주시는데...
-
막 학교에서 등급말고 몇점이상 넘기명 A,B,C 이런 식으로 나오는 거...
-
여친이 편지 보내줬는데 뭔말인지 모르겠어서 해석좀 해주세요...
-
딴거 할 거 많긴 한데 6모전에 수특 공부 해야할까요 아니면 걍 딴과목 할까요별개로...
-
카약카약카약! 카약카약사탐날먹카약카약카약카약!!
-
안녕? 2
반가워
-
한국 현대소설 중에 예전 고향의 친구에게 전화가 와서 한 번 놀러가기로 했지만 막상...
-
상대적으로 차이가 나면 자격지심을 느낄 수도 있지 않을까요?
-
러셀에서 전대실모 본다고 5덮을 안봐서 다른 학원가서 보려 하는데 어디가 있을까요??
-
전공 공부하기 힘드네요...
-
4덮 물리 0
1페 어려웠다는 얘기가 많네 평소에 실모풀때 1페이지 그렇게 빨리 넘기는 편이...
-
성격까지 못생겨서...
-
인생이 갑자기 뭣같앗음
-
D-3ㅇㅈ 2
-
체화한다는거 7
실전에서 어떻게 해야 하는지 행동 강령을 익히는 거로 보면 되나요?
-
하이
-
공간벡터 빼고 똑같은건가요?
-
맞팔할사람ㅁ 12
있으려나
-
폰에 sns랑 다른 앱들 다 지웠거든 ㅠ
-
자러감뇨 1
-
자러갈게 2
이바
-
5시 기상 목표 8
뱃팅 받아요 기상 실패시 1.5배 환급
-
오르비나 할걸 0
ㅇㅈ도 못보고
-
무슨 취미가 기벡문제푸는게 취미야
-
내일은 가야해
-
사문정법 질문받는다 11
정법 작수 ㅈ망해서 사실 질문 못받는다 걍 하지마라 이 ㅂㅅ 과목은 ㅇㅇ
-
아
-
아니 실화냐 7
어깨가 뭔가 불편해서 봤더니 뭔 뿔이 달려있노
-
전 6
-
킬캠 곧 나오네 5
침이 질질....
-
96~99 기만자니 뀨대나 메디컬로 꺼지면 됨 ㅡㅡㅡㅡㅡ올1컷ㅡㅡㅡㅡㅡ 95 연고공...
-
오랜만에 무물보 9
안받겟읍니다
문자로 쓴 후 안 되면
직접대입해서 관찰
수열파트는 항상 이렇게함
문자로 둔다는게 일반항처럼 미지수 설정 말하시는건가
답 7인가요
암산뭐임
땡땡
24인가
머리로 하니까 잘 안되넹
맞음 근데 머리로 어케함 시팔??
24?
나조건 해석한 뒤에는 걍 귀납적추론때림

아니..진짜 뭐임 벽이다 벽정보가 많은 항부터 출발하는 게 맞는데
얜 딱히 가 조건으로 만들어낼게 없어보이니
나 조건 보고 a_1 k로 임의 지정하기 ㅋㅋ
지리네요..
이창무 쌤 심화특강도 한번 들어보셔요ㅋㅋ
수열푸는거보면 지림 ㅋㅋ
전 그정도 레벨 하지도 못할듯 ㅋㅋㅋㅋ
진짜 이런건 그냥 손도 못대겠네
(가)조건을 보고 4항부터 들어가서 역추적을 해볼까 하고 봤을 때 부호땜에 굉장히 귀찮아질거라는 게 예감이 됨+합과 항의 관계가 매우 특수
-> 정추적으로 규칙 파악
(가) (나)를 만족하려면
-32 16 8 4 2 1 1/2 ••••••
-32 -16 -8 -4 -2 -1 -1/2 ••••••
이런 느낌인가
a4+ a6 보고 4+1 생각남
암산 불가능하진 않은 듯요
24?
그냥 읽고 아 점점 작아져야지 절댓값을 만족하겠네
생각하고 풂요

부럽다sn=an or sn=-an sn=0이 아니니까 n>=2에선 2sn=sn-1이겠구나하고 쓰윽 풀것같네요
(나)보고 a[1] < 0, n ≥ 2에선 a[n]이 공비 1/2인 등비급수인 거 알아챈 다음에
(가)보고 a[4] = 4, a[6] = 1 박은 뒤 |a[1] + a[3]| = |(-32) + 8| = 24 이렇게 풀은 듯

지립니다이진법 떠오름
뭔가 1 -0.5 -0.25.... 넣고 싶게 생겼음
배율 조정하고

벽이다 벽an sn 같이 주어졌고 sn을 an에 대해 나타내자니 나 조건의 절댓값이 거슬림->an+1 을 sn+1 - sn 으로 나타내서 풀되, an에 대해 주어진 모든 조건들을 sn에 대해 바꿔서 풀면 끝
암산 24
x축 그어놓고 a1부터 어디쯤 위치해야 야무질지 대가리 열심히 굴리면됨
걍 |S[n]|=|an[]|=|S[n]-S[n-1]| 인데 S[n-1]=/0이니 S[n]=/S[n-1] 이므로 서로 부호 다르다는걸 이용해서 식계산할듯
윗분들보면 고능하게 잘 푸시는데
그냥 정석적으로 an=sn-sn-1로 바꾸고 규칙파악한다음
a4혹은 a6를 미지수로 잡는다 해서 가 조건을 풀 수 있는게 아니라는걸 파악하고 a1을 미지수로 잡아야겠다 생각하고 계산몇번하면 해결 할 수 있을 듯요
1.Sn an관계식섞여있을땐
an을 Sn-Sn-1로 바꾸는게 유리하다
2.주어진 항 간 관계식에서 어느하나를 미지수로 잡아 해결할 수 있는 지 확인 -> 안되면 정추적/역추적 방향 결정하기
이정도로 생각하시면 좋지 않을까요..?
저도 그리 잘하는편은 아니라..ㅎㅎ
감사합니다!
문제 좋네요
배울점이 있는 문제인듯
뒷북해설 해드리자면
1. 구하는 값을 본다 -> 수열의 특정항 -> 수열의 정의가 궁금하다
2. 조건을 보니 (가)조건이 '특수'한 트리거고 (나)조건이 수열의 '일반'적 정의이다. (나)를 해석하고 (가)를 (나)에 먹이는 방향으로 잡는다
3. (나)조건 해석을 시도한다. 뭔가가 같지 않다는 조건과 뭔가가 같다는 조건이 있다. 수능 문제는 하나의 정답을 구해야 한다. 그렇기에 등식이 중요하다. 등호가 없는 부등호나 같지않다의 경우는 실수의 '연속적인' 후보들 중에서 딱 하나의 답을 특정해주지 못한다. 따라서 '이산적인' 케이스를 배제하는 근거가 되는 것이 유일한 역할이다. 그렇기에 등호가 없는 부등호가 부등식이 나오는 경우 '케이스'에 염두를 둔다.
그러고 보니 오른쪽 등식에 절댓값이 있다. 절댓값이 있는 경우 취해야 할 몇가지 필연적인 태도들 중 하나는 케이스를 나누는 것이다. 같지않다 조건이 뭔가 케이스를 지워주지 않을까 하는 생각을 갖고 절댓값 조건을 바라볼 수 있다.
그리고 Sn과 an의 관계식이 있는데, 웬만하면 둘 중 하나로 통일시키는 것이 좋다. 우변을 Sn–Sn-1로 바꾸고 싶다. 그 전에, n=1의 경우 아무런 정보를 주지 못하므로 등식의 성립범위를 n>=2로 제한해도 동치이다. 그리고 케이스를 나누면, n>=2에 대해 Sn-1=0 혹은 Sn=1/2Sn-1인데, 전자의 경우 왼쪽의 같지않다 조건에 의해 깔끔하게 지워진다. 분류기준을 놓치지 않는 상태로, Sn이 등비수열이니 귀납적 정의를 일반항으로 바꿀 수 있고, Sn의 일반적 정의를 알고 있으니 an의 일반항도 구할 수 있다.
4. 이제 해석한 정보에 트리거 역할인 (가)를 집어넣으면 모든 항이 결정되고 구해야 하는 값도 구할 수 있음
뒷북해설이라 작위적이긴 한데 제가 강사입장이라면 이렇게 해설했을듯
자세한 풀이 감사합니다 다시 풀어볼게요 ㅎㅎ