[칼럼] 코사인법칙과 싸우는 남자
게시글 주소: https://orbi.kr/00072869879
어려운 문제는 아니지만
귀찮음이 많았던 24 수능 13번 문제
정석대로 푸는 방법은 각 ADC에 대한 sin 값을 알아내기 위해 AC의 길이가 필요하니까 제2코사인법칙 써서 어쩌고 저쩌고 열심히 푸는 건데...
이런 생각을 한번 해볼 수 있지 않을까요?
딱 보고 감이 잘 안 오는 분도 계실 수 있는데
부연 설명을 덧붙이자면
SAS 합동에서 A가 왜 사잇각이어야만 합동이 되는지 생각해보신 적 있으신가요?
다른 각도 둘이나 있는데 왜 하필?
그걸 알아보기 위해서 AB=5, BC=3, 각 BAC=30도인 삼각형 ABC를 한번 생각해봅시다.
먼저 AB=5, BC=3이라는 상황은
위의 그림과 같이 길이가 5인 선분 AB와 그 선분의 한 끝점 B에서 반지름이 3인 원을 그리고 그 원 위의 한 점을 C라고 하는 상황과 같습니다.
그러면 이 상황에서 각 BAC의 크기가 30도라 하면
A에서 선분 AB와 이루는 각의 크기가 30도인 반직선을 그어서 만나는 점을 C라고 하면 되겠네요
그런데 여기서 문제가 발생합니다.
저렇게 반직선을 그어서 원과의 교점을 찾으면 교점이 하나일 수도 있지만
그림과 같이 둘 일수도, 없을 수도 있기 때문입니다.
그럼 이렇게 둘인 상황에서 점 C를 확정할 수 있을까요?
추가적인 조건이 주어지지 않는 이상 없습니다
이렇게 사잇각이 아닌 상황에서는 삼각형이 하나로 결정되지 않을 수 있기 때문에 반드시 SAS 합동에서 A는 사잇각이어야만 합니다.
그런데 문제의 상황에서는 어떤 일이 일어나는가 하면
기준으로 잡는 선분 AB의 길이가 3인데 반해, 원의 반지름으로 삼을 BC의 길이가 AB의 길이보다 큽니다
이런 상황에서 AB와 이루는 각의 크기가 60도이고, A를 지나는 반직선을 그어도 원과 반직선이 만나는 교점은 단 하나밖에 존재하지 않게 됩니다.
반직선이 아닌 직선을 그으면야 당연히 교점이 두 개 생기겠지만
이 경우는 각 BAC가 60도가 아닌, 120도가 되기 때문에 당연히 문제의 상황을 만족하지 못합니다.
이처럼 사잇각이 아닌 각이 주어지더라도 문제의 상황에 따라서 점이 단 하나만 결정되는 경우를 잘 이용하면
이렇게 계산을 상당히 간략화할 수 있습니다.
이제 남은 건 계산 뿐...
결론)
나는
코사인법칙이
싫어요
개추는 언제나 힘이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 김승리 수학 김기현 영어 이명학 생윤 임정환 사문 윤성훈 물론 몇명은 강의 1~2개만 듣긴함
-
미적분
-
https://orbi.kr/00072885361/%5B%EC%9E%90%EC%9E%...
-
진짜 ㅆㅂ
-
관독 알바하는데 학생이 오르비하는거 보고 갑자기 추억에 젖어서 들어와봤어유 내가...
-
살기 ㅈㄴ 귀찮음 걍24시간눕고싶다
-
흠
-
영어 0
개씹노베 (주어동사목적어 모름) 상태에서 또선생 기초 듣고 이제 어느정도 기초는...
-
지금하는 공부에 몰입하니 기분이 좋아짐
-
다들 밥먹으러 내려갔을 때 혼자 애니 한 편 보는 게 취미였는데 지금은 재종이라 빡셀듯
-
졸업하기 전까지는 되겠지
-
배고파서 죽을뻔 6
불고기덮밥으로 수혈해버리기
-
생윤 윤사 재밌다고 철학과 오는 것이 맞는가 - 눈덩이의 중간고사 준비 공리주의 1편 6
*이 글은 필자의 뇌피셜과 드립이 난무하는 글입니다. 설명을 위해서라면 교육 과정의...
-
바로 실내 벽지와 바닥 목재 타일 때문임 벽지는 종이 재질 계열로 되어 있으니...
-
내가 이렇게 계산 줄이려고 고민할 시간에 그냥 쭉 계산 미는게 더 빠르게 풀리지 않을까 싶은...
-
요즘 드릴같은 n제 양치기 하는 중인데 넘 킬러주제만 푸는 것 같아서 병행할 문제집...
-
여기 향수 지린다 14
추억이 방울방울… 다들 어케지내셨어요
-
돈 아까워 죽겠노
-
사탐런 조언좀요 0
생지하다가 생명에서 생윤으로 틀려하는데 사문이 낫나요. 볼륨 너무큰가..
-
안녕하세요. 오늘 칼럼에서 제목과 같이 p오비탈/s오비탈에 대해서 다뤄보고자...
-
국어 (화작) 91 수학 (확통) 63 영어 98 한국사 21 생윤 48 윤사 39...
-
여, 19
내가 왔다 다들 기억할란가..
-
자랑은 아니고... 오죽 하면 생선들이 너는 국어만 해결하면...다 골라간다고...
-
점메추 1
ㄱㄱ
-
*본 칼럼은 물개물개님의 칼럼대회에 제출되었습니다. 안녕하세요, 수능 국어를...
-
목동 반수반 6
시대인재 빼면 어디가 괜찮을까요!?
-
삐쩍 마르고 싶다..
-
하잉 얼마 전에 심멘이 배송해준다는 깜찍한 공지를 알렸는데 오늘은 더 깜찍한 공지를...
-
4덮 후기 0
언매 59+22 3, 11, 13, 17, 19, 20, 21, 41 독서론을 누가...
-
모르는 걸 구글에 검색할때마다 명쾌한 답을 내주는건 오르비야. 이러면 나는 숭배할 수 밖에 없어
-
ㅈㄱㄴ 그냥 순수한 호기심임
-
뭔 얘기를 하는거야 나도 알려줘
-
날마다 돌아오는 맞팔구 12
-
4덮 화작 0
4덮 화작 87점인데 보정 1 되려나요...?
-
언매런고민 노벤데
-
ㅋㅋ 3
ㅋㅋ
-
누가 팔취하면 누가 걸고해서 딱 80선 유지중이네 ㅋㅋㅋ
-
한라봉,천혜향,카라향,황금향 솔직히 다 맛이 거기서 거기인듯..
-
4덮 생명 40점이고 지구는 진짜 망해서 점수도 말못함... 근데 사탐런읗 하면...
-
4월4일에 샀는데 처음으로 바닥에 떨어짐.. 기스는 안난거 같지만 찝찝..
-
뿌잉뿌잉 멘헤라 애긔라 엄마랑 병원왔어요 요즘 명품 너무 많이 집착한다고
-
실존주의적이잖아 뭔가 실존주의적인 작품엔 로망이 있어
-
요양원출근 16
어르신 업고놀기 오늘도 팟팅
-
미지수 t,t+2로 두고 0부터 t+2까지 뺀함수 적분하면 0 이렇게 풀려고 했는데...
-
재수생이고 6모 전까지 강기분,새기분 문학 일,취 클래스 독서, 마더텅 독서 이렇게...
-
이번 수특 문학은 '무정' < 이게 제일 재미있네 10
소꿉친구 느낌 여주 한명이랑 가정교사로 들어간 집 여주 한명이랑 ㅋㅋ 이게 근현대 라노벨인가
-
안녕하세요 반수할 생각이라 수능공부와 대학공부를 두고 고민하고 있습니다. 혹시...
-
이래도 8000원이야? 실화냐

저런 계산덩어리 코사인법칙말고진짜 중학도형 많이 쓰는 코사인법칙이 좋아요..
접현각 닮음 합동 원주각 다 나오는거
그게 계산을 훨씬 덜 하게 되긴 하죠
어..그러니까 기왕 특수각 준 거 수선의 발 뻗으면 제2코사인을 안 쓸 수 있다는거죠?
굳이 특수각이 아니어도 성립은 합니다
코사인법칙이 삼각형에서 수선의 발 뻗어서 나온 사실을 정리한 거니까 사실 같은 거 아닐까 싶어요
코사인법칙(공식으로 정리됨) vs 그리스인처럼 풀기 ㅋㅋㅋ
그래도 무작정 숫자 공식에 때려 넣는 것보단 빠르니 ㅎㅎ

숫자편할땐 원론적으로 가는게 더 빠를때가많더라고요공식 귀찮아요

코싸남 ㄷㄷ;;;
본인이 제1코사인법칙이 교육과정이었던 울트라레오면 개1추 ㅋㅋ
무의식적으로 제2코사인법칙과 싸우는 남자라고 적었
근데 걍 코사인법칙 쓰는게 빠르고 편할듯
코제2 항상 각이 잘 안보임 ㅜ