[칼럼] 코사인법칙과 싸우는 남자
게시글 주소: https://orbi.kr/00072869879
어려운 문제는 아니지만
귀찮음이 많았던 24 수능 13번 문제
정석대로 푸는 방법은 각 ADC에 대한 sin 값을 알아내기 위해 AC의 길이가 필요하니까 제2코사인법칙 써서 어쩌고 저쩌고 열심히 푸는 건데...
이런 생각을 한번 해볼 수 있지 않을까요?
딱 보고 감이 잘 안 오는 분도 계실 수 있는데
부연 설명을 덧붙이자면
SAS 합동에서 A가 왜 사잇각이어야만 합동이 되는지 생각해보신 적 있으신가요?
다른 각도 둘이나 있는데 왜 하필?
그걸 알아보기 위해서 AB=5, BC=3, 각 BAC=30도인 삼각형 ABC를 한번 생각해봅시다.
먼저 AB=5, BC=3이라는 상황은
위의 그림과 같이 길이가 5인 선분 AB와 그 선분의 한 끝점 B에서 반지름이 3인 원을 그리고 그 원 위의 한 점을 C라고 하는 상황과 같습니다.
그러면 이 상황에서 각 BAC의 크기가 30도라 하면
A에서 선분 AB와 이루는 각의 크기가 30도인 반직선을 그어서 만나는 점을 C라고 하면 되겠네요
그런데 여기서 문제가 발생합니다.
저렇게 반직선을 그어서 원과의 교점을 찾으면 교점이 하나일 수도 있지만
그림과 같이 둘 일수도, 없을 수도 있기 때문입니다.
그럼 이렇게 둘인 상황에서 점 C를 확정할 수 있을까요?
추가적인 조건이 주어지지 않는 이상 없습니다
이렇게 사잇각이 아닌 상황에서는 삼각형이 하나로 결정되지 않을 수 있기 때문에 반드시 SAS 합동에서 A는 사잇각이어야만 합니다.
그런데 문제의 상황에서는 어떤 일이 일어나는가 하면
기준으로 잡는 선분 AB의 길이가 3인데 반해, 원의 반지름으로 삼을 BC의 길이가 AB의 길이보다 큽니다
이런 상황에서 AB와 이루는 각의 크기가 60도이고, A를 지나는 반직선을 그어도 원과 반직선이 만나는 교점은 단 하나밖에 존재하지 않게 됩니다.
반직선이 아닌 직선을 그으면야 당연히 교점이 두 개 생기겠지만
이 경우는 각 BAC가 60도가 아닌, 120도가 되기 때문에 당연히 문제의 상황을 만족하지 못합니다.
이처럼 사잇각이 아닌 각이 주어지더라도 문제의 상황에 따라서 점이 단 하나만 결정되는 경우를 잘 이용하면
이렇게 계산을 상당히 간략화할 수 있습니다.
이제 남은 건 계산 뿐...
결론)
나는
코사인법칙이
싫어요
개추는 언제나 힘이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고노노노무노? (고려대 노어노문학과 출신 노무사입니까?) 2
고노노노무노노. (고려대 노어노문학과 출신 노무사가 아닙니다.)
-
영어 듣기는 어디서 듣나요
-
라임 ㄷ ㄷ
-
점심 ㅇㅈ 4
완전 인도식으로 해먹음(사실 부모님께서 해주심) 향신료 많이 넣으니까 맛있음 바로...
-
대사성 질환 배우면서 시험범위라서 관련 정보 외우는데 나 ㅈㄴ 많이 해당하네...
-
ㄱㄱ
-
1. 서울시 경찰, 소방, 교육인력 전부 철수 2. 서울시 거주자 대학 진학 매우...
-
언제죽지 2
흠
-
ㅇ
-
9번: 역시나 도형 해석은 문제가 없었고 계산이 문제였다.. 어쩐지 답이...
-
3월 모의고사에서 백분위 기준 몇 정도 떨어지나요 보통
-
연평뭐임 3
캠퍼스 돌아다니는데 옆에 지나가던 사람들이 카푸치노아사시노랑 트랄랄레로 트랄랄라...
-
저녁 대신 저격을 먹겠습니다 정신차리게해주세요 진짜 제일급한 세과목 해야함 진짜진짜ㅏ
-
금색
-
딴건 다 알겠는데 이 사진의 유형만 이해가 안되네요 인강도 개념설명은 안하고요 특히...
-
직업적 인식이 좋은거죠? 현실은 뭐 본인들이 제일 잘 알거고 물론 타직종이랑...
-
와 진짜 와 1
로그아웃하고 댓글 달린거 보니까 가관이다 본인도 본인이 뭔 말하는지 모를 듯
-
수능 수학 100점 받는데에 이런 공부가 중요할까요? 1
대치 깊은생각 조윤형 선생님 설명회를 보면 강남권 고등학교에서는 내신 1등급...
-
4덮 수학 9번 2
덧셈정리 쓴 미적러는 개추 ㅋㅋ
-
시발점 워크북 5
개정 시발점 수1수2 완강하고 수분감 수1수2 step1까지 다 풀고 확통1단원...

저런 계산덩어리 코사인법칙말고진짜 중학도형 많이 쓰는 코사인법칙이 좋아요..
접현각 닮음 합동 원주각 다 나오는거
그게 계산을 훨씬 덜 하게 되긴 하죠
어..그러니까 기왕 특수각 준 거 수선의 발 뻗으면 제2코사인을 안 쓸 수 있다는거죠?
굳이 특수각이 아니어도 성립은 합니다
코사인법칙이 삼각형에서 수선의 발 뻗어서 나온 사실을 정리한 거니까 사실 같은 거 아닐까 싶어요
코사인법칙(공식으로 정리됨) vs 그리스인처럼 풀기 ㅋㅋㅋ
그래도 무작정 숫자 공식에 때려 넣는 것보단 빠르니 ㅎㅎ

숫자편할땐 원론적으로 가는게 더 빠를때가많더라고요공식 귀찮아요

코싸남 ㄷㄷ;;;
본인이 제1코사인법칙이 교육과정이었던 울트라레오면 개1추 ㅋㅋ
무의식적으로 제2코사인법칙과 싸우는 남자라고 적었
근데 걍 코사인법칙 쓰는게 빠르고 편할듯
코제2 항상 각이 잘 안보임 ㅜ