수학황 지인도 까암짝 놀란 미적 풀이
게시글 주소: https://orbi.kr/00072839772
사실 ㅈ도 아닌데 범바오가 가르친대로가 아닌 내 스스로 생각해낸 풀이라는게 뿌듯해서 올림 캬캬.미국이 놀라고 중국이 소리지른 바로 그 풀이 캬캬.
각통일 안돼있는거 불편해서 이배각공식 썼는데 인수분해가 되는게 캬 문제 맛있네 음음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 이거푸는데 40분 걸렷어여
-
오랜만에 글쓰네요 ㅎ 다름이 아니라 이번에 저희 동생이 국어 50 점대로 5등급을...
-
빨리 벗어봐 할 게 있다니까?
-
오르비 잘자요
-
전 번장에서 산 짭블랑이요
-
그림 예쁘게 그린다=어느정도 위치 신경써서 그린다 전 문제풀면서 삼차나 지로 삼각...
-
람쥐님 믿습니다 14
크크크
-
작수 국어 백분위 91 2뜨고 그 후로 한번도 책 펼쳐본 적 없는데 다시 시작하려면...
-
수고 많았고 내일도 수고해봅시다 다들 수이팅!!
-
다시 한번 말씀드리지만 저희는 3학년이고 님들은 1,2학년입니다
-
ㅇㅎ
-
문과 올 11111 나온애가 대략 높은 1이라고 치고 1년만에 의대갈 수 있다...
-
공부나해야지
-
내일 학교에서 보는데 왜 4덮 놔두고 굳이 이투스를 보는지 모르겠네요..
-
진짜 여자만 와보셈 20
이게 그 양아치 시계로 유명한 롤렉스 서브마리너 청콤(블루+골드)임 단순히 시계만...
대 대 대
문제 신기하게 풀고 신기한 대학 가기
로피탈로 쉽게 풀릴거같은데
로피탈 기억도 안남 범바오가 걍 배우지 말라고해서 안배우는중...
수학황 지인도 걍 로피탈 딸깍으로도 풀린다고 하더라구요
로피탈 두번선에서 깔끔하게 해결될듯
빨간약 멈춰잇
로피탈이 머엿더라 대학에서 배웠던거 같은데 캬캬
강기원의 함수의 극한 심화 내용을 학습하면 굉장히 합당하고 좋은 풀이임을 알수 있군.
제 풀이가 좋은 풀이인가요? 캬캬캭
“강기원도 인정한” “수학황도 놀란” “미국이 빌고 중국이 엎드려 절한”
강기원이 가르치는 극한 문제풀이 개념이랑 완전 합당한 풀이

오오 감사합니다 더욱 정진 또 정진~~