샤인미 미적분 70번 해설
게시글 주소: https://orbi.kr/00072811617

이계도함수 연속이라는 조건이라면 납득할텐데 존재한다는거 만으로 저렇게 결정짓는게 맞나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강민철 들을때마다 자꾸 10
뭉탱이 단어 나올때마다 움찔함 범주를 뭉탱이로 읽어버린 나
-
지금 출제되지 않는 유형이거나 과거 문제들은 안들어가 있나요?? 예를 들어...
-
그 다음에 할 책 츄천해줄 수 잇을까요? 마더텅 수분감 뉴런하면서 돌려서 같이 끝날...
-
정병호가 무식하다고?? 10
서울대가ㅈ으로보이나 ㅋㅋ 참고로 이사람은 학부모인 듯 ㅇㅇ 말투부터 틀딱냄새가너무남
-
언제하지
-
미적 자신 없는데 튀어야되나..
-
실시간 정병호t 잦댐 10
cia에 신고 당하심 ㄷㄷ 씨아이에이에 신고 하다니 ㄷㄷㄷㄷㄷㄷㄷ
-
08년생이예요 선넘질도받
-
원래 미적이었구요 1.수학이 제일 약점과목임 2.원래 모고 보면 공2미2/...
-
그냥 재능 아님? 암산테스트 본인 최대가 45점인데 친구중에서 8-90점 고정으로...
-
왜냐면 개념만 해도 1등급이 나오니까
x>0에서 f(x)가 사차함수에요?
넵
도함수의 좌극한과 우극한이 각각 존재한다면
미분가능하다는 조건에서 도함수가 연속임을 사용해도 돼요
그러면 혹시 도함수를 가진다는 표현이랑 연속이라는 표현은 구분하면서 생각해야할까요..?
이계도함수를 가진다라는 말은 도함수가 미분가능하다랑 같은 말이지만,
이계도함수가 연속이라는 말이랑 완전히 같은 말은 아니에요
늦은시간에 답변 감사합니다~
아마 수능에서는 미분가능=도함수 연속으로 봐도 맞을거에요..
도함수의 좌극한 우극한이 그 지점에서 진동하면서 발산하는 경우를 주의해야하는데 출제 확률이 낮겠죠