-
의전원도 이공계 인재 쓸어간 것으로 아는데 로스쿨로 인한 학점 폐혜가 좀 많음...
-
매일 아침마다 수특 분석한거 읽으려고 하는데 어떤 선생님의 분석서가 가장...
-
여기까지만 0
포기퍼기
-
4덮 생윤 0
무보 44면 2뜰까요..?
-
국어 강사 추천좀요..
-
수능특강 수학은 진짜 17
어째 매년 날이갈수록 구려지는거같지
-
화학 수행 질문 19
내신 수행 문제인데 분수로 저렇게 썼는데 답이 맞을까요? 22.4는 3으로...
-
4덮 생윤 0
42면 무보로 몇 뜰까요?
-
4덮 국어 0
화작 68 정도면 무보로 몇 뜰까요?
-
물리력 높여야 됨
-
재미가없어
-
수학 n제 3
작년에 거의 기출만 해서.. 샤인미? 교재가 좋다고들 하셔서 풀어보고 싶은데...
-
사문 vs 정법 4
사문 : 분명 수능 전날까지 잘했었음 근데 작수 당일 4등급 쳐맞았고 이유조차 모름...
-
1. 실력측정용이니 모르는 문제는 안 찍고 점수 받는다 2. 그냥 찍는다. 궁금해서...
-
재수생입니다. 1/15부터 이투스247에서 독재중입니다. 제가 수학이 약해서 기출을...
-
직탐이랑 제2외국어는 왜 안 올려줌? 여기도 시간이랑 문항수 출제과목 바뀌잖아 ㅡㅡ
-
숭실 경영 입결 1
백분위 어느정도면 안정으로 갈 수 있나여??
-
레넥톤이 떡상하네 ㅋㅋ
-
범준이형!!
-
분명 킬러급은 없는데 2페부터 계산압박이 말이안됨 결국 4페 도달도 쉽지가 않음
-
나니가스키 3
초코민또 요리모 아나타
-
갑자기 궁근해졌는데 수능 끝나고 졸업까지 2달이나 남던데 이때 보통 뭐함?? 어디 야외활동도 가나
-
4덮 수학 6
75~80이면 무보 3 가능할까요?
-
카나토미의 미래 1
1. 개강을 한다 2. 강의가 레전드로 밀린다 스블 확통 : 마지막 업로드 2/19...
-
정병 이게 참 복잡하다고 느껴지네 저는 제 우울증 원인의 7할이 좋은 대학...
-
국어 풀만한거 2
지금 tim 듣고 매월승리도 계속 풀고 있는데 tim이나 허슬 없는 날은 풀게...
-
닉값 ㄹㅈㄷ 10
아리따울 나 빛날 경
-
초딩때 들었을때는 분명 경쾌한 동요였는데 다시 들으니 뭔가 좀 슬프네.....
-
일클 바탕모 안 풀면 하루에 최소 1강씩 듣는다면 몇주 컷 가능??? 17
후딱 끝내고 현강 따라가고싶은뎅
-
높은 확률로 환경이 사람을 만든다...
-
시험 공부 제대로 안하고 있다는게 너무 불편하네 뭔가 더 많이 했어야했는데라는...
-
머야 7
퍼즐 좀 쉬운데
-
개인적으로 교육청 문제중에서 참신하고 발상 좋은 문제 되게 많았고(다 풀어본건...
-
똥먹기 9
미소녀 똥 우걱우걱
-
이렇게 생겼으면 좋겠다
-
뭐지 그 자연물 묘사하는 대목이었는데 에메랄드 어쩌구 하면서 되게 어려운...
-
지금부터 고민해야 맛있게 먹을 수 있음
-
그럼 내가 못보거든 문학만 핵불로 나오거라~~
-
재수생인데 유튜브나 커뮤 같은 걸 안 하면 뭔가 답답하고 불안해여 가끔씩 하는 건...
-
ㅇㅈ 8
-
국정원 문학 좋나요? 문학 독해틀을 만들어주는건가
-
설마 아무쓸모도 없진 않겠죠
-
특히 암기하는게 너무 어렵다 수능공부는 어케 했지 싶음,,
-
롱폼 보기 힘드네
-
오르비 2
굿나잇
-
슬슬 확통도 해야되는데 13
하기 존나 싫음; 진짜 개노잼임
-
선택자수 제일 많은 이유는 뭔가요? 얘기만 들어보면 제일 하면 안되는 과목이 생윤같은데
-
고2이고 학원에서 한번 돌렸는데 중딩때라 잘 기억이 안납니다 시발점을 들으려 하긴...
-
f'(0)+f'(3)=0 f'(x)≤0 on (-inf,3] ••• ㄱ...
Yes
어케함? 처음거 증명하는거 뭔 내신문제에 있고
두번째꺼 경찰대 기출에 있던데
이거 하나만 받아드리면
(1)은 H_(2^n) ≥ 1 + n/2 만 증명하면 되고
(2) 는 1/n^2 < 1 / n(n-1) 으로 증명하면 됨
약간 작년 10모 28번
급수에서 쓰는 샌드위치 정리 느낌인가
이거 정적분과 급수의 관계로 하는 샌드위치 쓰는 거 아니었나로 기억함. 내 기억이 맞다면.
맞아요
극한에서는 교육과정이 아니더라도 당연한 일부 사실들은 슬쩍 넘겨버려도 문제없는 경우가 일부 있음
예를 들면 lim a_n = ∞ 이면 lim 1/(a_n) = 0 이라든가... a_n > b_n 이고 b_n → ∞ 이면 a_n → ∞ 이라든가... 이런 것들.
막상 증명하려고 보면 얘는 해석학의 내용이 필요함 (실제로 고등학교 과정으로 증명해보려고 하면 불가능하다는 것을 느낄 수 있음)
하지만 이 둘은 그냥 잘 쓰이는 성질이잖음.
이런 게 좀 있음.
첫번째꺼는 an은 정의역이 자연수인 함수 f(x)라고 둘수있고
f(x)가 x->무한대일때
양의 무한대로 발산이면 1/f가 0으로 수렴한다 이거가지고서 하면되는거아닌가요
그럼 f →∞이면 1/f → 0인 걸 어떻게 증명하죠?

비교판정법은 교육과정 아님아오수시시치
이거 수리논술 필수개념 아님감
학교쌤이 샌드위치 정리 비슷하게 증명해주셨는데 엄밀히 교과내인지는 모르겠어요..
일단 전자는 해당 급수보다 명백히 작은
1/2 + 1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + ...이 발산함을 통해 증명 가능
후자는 윗분이 잘 설명해주셨네요
저는 적분판정법부터 떠올렸는데 이건 교과외라 봐야 할 듯..
증명은 교과내로 가능하고 수렴값 구하는 건 대학과정