230622 without 유리화
게시글 주소: https://orbi.kr/00072794502
유리화를 하지 않아도 수2 개념만을 활용해 논리적 비약 없이 박스조건을 해석할 수 있습니다
하지만 수2 개념만을 활용했다고 무조건 수2 풀이라고 할 수는 없죠
마치 미적분에서 등장하는 개념인 '볼록성'을 직관적으로 이해할 수 있고 수2 개념만으로 충분히 설명할 수 있다고 하더라도 수2 문제에서 볼록성을 활용하는 풀이가 수2 풀이라고는 할 수 없는 것처럼요
그런 이유로, 수2만 배웠어도 이해할 수 있도록 썼지만, 미적분을 선택하지 않은 사람도 이렇게 풀 수 있어야 한다고는 생각하지 않습니다
반면 미적분을 선택한 사람이라면 당연히 이렇게도 풀 수 있어야 한다고 생각합니다
각설하고 풀이 ㄱㄱ
먼저 박스조건 안의 극한을 보면, 분모와 분자가 모두 0으로 수렴하는 0/0꼴의 극한인데, 겉보기엔 되게 험상궂게 생겼지만 구조를 뜯어보면 유리화를 하니 마니 하는게 창피할 정도로 굉장히 단순한 형태의 극한식입니다
분자를
꼴의 합성함수로 이해할 수 있거든요
합성함수의 0으로 가는 극한의 본질은, 먼저 겉함수를 수렴하도록 하는 간단한 꼴의 인수 h(x)를 나누고 곱하여 f(g(x))에 대한 극한을 h(g(x))에 대한 극한으로 변형시킨 뒤 속함수를 해결하는 것입니다
그러므로 첫째로 해야 할 일은
을 만족하는 적당한 간단한 꼴의 h(s)를 찾는 것입니다
여기서 직관적으로 분자는 y=√x를 반드시 (0, 0)을 지나도록 평행이동시킨 꼴이고 따라서 g(t)가 0일 때 h(s)=√s, g(t)가 0이 아닐 때 h(s)=s(미분계수의 정의를 떠올려보면, (0,0)에서 미분가능한데 미분계수가 0이 아니므로...)라는 것을 직관적으로 내다볼 수 있으나 지금은 문제를 푸는 중이니 좀더 연역적으로 접근해봅시다.
분자가 무리함수 꼴입니다
무리함수는 이차함수의 부분적인 역함수이고 따라서 위의 극한을 역함수의 극한으로 해석할 수 있습니다
역함수의 극한의 기본은 치환을 통해 식변형을 시도하는 것입니다
첨언하자면 무리함수, 분모분자가 일차함수인 유리함수, 일차함수, 이차함수, 로그함수, 지수함수는 대수적으로 =c 꼴의 방정식의 근을 구하기 쉬운 함수인데, 이는 곧 역함수를 구하기 쉬운 것과 같습니다
역함수를 구하기 쉬운 성질은 곧 치환하기 편하다는 성질로 이어지고, 실제로 상술한 함수들은 극한 계산이든 치환적분이든 상당히 자주 치환되는 편입니다
예를 들면 lim x->0 (e^x–1)/x =1의 증명도 e^x–1을 t로 치환하는 것이 핵심이고, lnx를 적분할 때도 1을 적분하지 않고 lnx를 t로 치환한 다음 부분적분을 시도할 수 있습니다
어느 쪽이든 부분적분을 해야 하는 것은 마찬가지지만요
하여튼,
로 치환하면
이고
s->0+일때 k->0+이므로 앞의 극한을
로 바꿀 수 있습니다
여기서 g(t)=0인 경우와 그렇지 않은 경우로 나누어 볼 수 있겠죠
h(s)를 고르는 것은 1. 단순한 꼴이고, 2. 극한이 수렴하기만 하면 무엇이든 상관없습니다
g(t)=0이라면 h(s)=√s를, 그렇지 않으면 h(s)=s로 고르는 것으로 충분합니다
글로 쓰니 주저리 주저리 길어졌는데, 지금까지의 내용들을 다시 정리하면 이렇습니다
1. g(t)가 0이 아닐 때
에서
가 0이 아닌 값으로 수렴하므로 박스 안 극한이 수렴할 필요충분조건은
가 수렴하는 것이고,
2. g(t)가 0일 때
에서 박스 안 극한이 수렴할 필요충분조건은
가 수렴하는 것입니다
그런데 두 케이스 모두, 극한의 수렴 여부가 t의 값과 독립적이므로, 두 극한 중 하나는 수렴하고 하나는 수렴하지 않아야 하고,
2. 의 극한이 수렴하면 1. 의 극한이 0으로 수렴하므로
1.의 극한이 수렴하고, 2.의 극한이 수렴하지 않아야 합니다
1.의 극한이 수렴하기 위한 필요충분조건은 f(x)=(x+3)(x-m)이고,
2. 의 극한은 g(x)가 x=0 근방에서 삼차함수인 고로 절대로 수렴할 수 없으므로,
박스 안 조건은
" t=–3, 6인 경우, 그리고 오직 그 경우에만 g(t)=0이고, f(x)=(x+3)(x–m)이다. "와 동치입니다.
따라서,
에서
m=–3 또는 m≥0이고,
a>0, b>3에서 f(b–3)=f(b+m)=0이므로 m=–3, b=9입니다
마지막으로 x=0에서의 연속성을 활용하면 a=3/4고
따라서 g(4)=19입니다
다쓰고 보니 ㅈㄴ 마음에 안드네요
뭔가 약파는 느낌
아무튼 읽어주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 안들어오면 되는거 아는데 그냥 일케 올려야 최대한 안들어올것 같아서요 ㅇㅇ.....
-
https://shor.kr/4j3
-
양승진 커리상 입문 N제 들어가야하는데
-
[성현국어] EBS 연계 『기연 모의고사』 1회차 배포 2
반갑습니다, 국어를 가르치고 있는 안성현입니다. 3월 모의평가가 끝나고,이제...
-
작년꺼 하나 골라서 다 풀려는데 뭐가 더 좋음여? 이유도 좀...
-
고2 인데 올해 3월에 학교에서 169.0 나와서 1년 동안 키 그대로이길래 성장판...
-
자 0
지마
-
저요
-
내신 5점대 애들이 정시한다고 비웃음 그게 너무 화남
-
https://shor.kr/4j3
-
오노추해준다 0
https://youtu.be/q-H7qVgFwrE?feature=shared 듣꼬판단해.
-
언매 1틀이나 다 맞으셨던 분들 얼마나 공부하셨나요?
-
스카 가 말아 1
존나 멀어 학교를 안 가면 되긴 해
-
수잘싶 1
수능 잘 보고 싶다
-
주무실게 1
듀듀 잘자시긔
-
어캄
-
https://shor.kr/4j3
-
추천 0
샴푸-시원한 바나나향임 바디워시-쿨피스 복숭아향임 둘다 가성비 개지림 샴푸->쿠팡...
-
얼버잠 4
장렬히 전사
-
반갑습니다 9
좋은 새벽입니다
-
ㅈ댓는데 어카쥐
-
혹시 지피티로 글내용 복사해서 질문하고 사진 보내주실분 있나요 4
orbi.kr##li:has(a.fluid-link[href*="%EB%8B%A8%E...
-
펜 없이 풀기 2
-
봉인지 떼면 흔적 남는다며 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ
-
야!!!!!! 14
-
삼각함수 활용만 쏙 빼서 깔끔하게 풀어야겟다14문제네
-
안보이네요 1
-
단어외우기빼고 ㅠㅠ 안전2등급 iwant!!!
-
웹르비에서 제목에 특정 단어가 포함된 글 안 보는 법 1
https://orbi.kr/00072627163 적용법은 위 링크 글 참고...
-
걍 오늘 시작한걸로 치겟습니다 왜냐면 아직 노베기 때문입니다
-
윤공주 저 사람 7
차단하고 싶은데 모바일에선 차단 못 해요?
-
https://shor.kr/4j3
-
진짜다쐬버리고싶음 우리나라가 총기소지안되는이유가잇음 만약 됏으면 난 테러리스트가 되었겠지
-
우효
-
. 17
.
-
옷도존내사고화장도존냐하고다녀야지..........ㅠㅠ
-
개 때리고 싶음
-
난 억울해 0
진짜 50분 넘게 누워있었는데 못잤어
-
ㅡㅡ
-
아무것도 모르는 찐 노베 과외학생을 위해 만들어 봤어요 잠은 못잤지만..ㅜㅜ 한컴 무료체험 좋군요
-
겨우 자러갓더니 4시간 자니까 깨네 씨바꺼
-
쳐 자야하나 3
-
전기나감 6
ㅅㅂ뭐지
-
원과목 기준 회차당 얼마정도가 적당한가요?
-
차단안했어요
-
사람 많이 뽑는게 장땡인가? 아니면 상대적으로 수준이 좀 내려가는(상의학과대비)...
-
비 많이오네 1
번쩍 하더니 천둥 침
-
너무 불행해서 견딜 수가 없어
사진 주인 ㄷㄷ
왜 유리아가 아니지