너는 문제를 푸는 사람이지 검토하는 사람이 아니다(25사관 22번)
게시글 주소: https://orbi.kr/00072793073
일단 조건 (나)를 보면 전년도 수능 22번에게서 영향을 받은 듯한 인상이 있다.
조건 (가)를 보면 h(x)는 f(x) 또는 g(x)이다. 이때 g(x)는 알려주지 않았다.
그러면 우리가 해야할 미션은 두가지임을 알 수 있다.
1. g(x)의 특정
2. h가 어느 지점에서 f이고 어느 지점에서 g인지 찾기
수학적 능력이 부족해 이 문제를 풀지 못하더라도
뭘 해야하는지 정도는 알아야 한다.
가지임을 알 수 있다.
(가)는 사실 'h(x)는 f(x) 또는 g(x)이다.' 이상의 정보가 없으므로, 이후의 해석은 (나)에 달렸다.
여기서 우리는 k가 실수라는 사실을 알 수 있다.
그렇다
k가 이산적인 변량이 아니라 실수이므로, 아래의 사실을 인지할 수 있다.
이 문제를 풀고 못풀고는 온전히 위의 문장을 결론으로 끄집어 낼 수 있냐에 달렸다.
따라서 (나)의 부등식으로부터 다음과 같은 통찰을 이끌어 낼 수 있다.
(대부분의 실수 x라는 표현이 상당히 비수학적이지만 이해하기는 쉬울 것이다.)
그리고 여기서 더 강력한 사실을 끄집어 낼 수 있다. 그리고 이건 그 해 수능에 출제 되었다.
만약 다음의 두 집합이 서로소라 가정하자.
우리는 'n(AUB)=3'라는 사실로부터 위의 가정이 틀렸음을 알 수 있다.
(보충)
n(A)=x, A와 B의 교집합의 원소의 개수를 y라 하면 우리는 2x-y=3을 얻는다
x는 y 이상이므로, 이를 만족하는 (x, y)는 (2, 1), (3, 3)이다. 그런데 후자는 A=B라는 사실이므로 모순이다. 따라서 (x, y)는 (2, 1)이다.
이를 구현하면
을 얻는다. f(x), g(x) 모두 x가 충분히 크면 양수이므로,
이런 부등식을 얻는다. 그러면 자연스레
이런 결론을 얻으니 x=alpha, alpha+2에서 h(x)는 극소임을 알 수 있다. 또한
이 과정을 반복하면, h(x)는 0 이상임을 알 수 있다.
따라서 x가 절댓값이 큰 음수일 때에는 h(x)=f(x)로 지정되었다.
그리고 삼차방정식 f(x)=g(x)는 많아야 서로 다른 세 실근을 가지므로,
f, g 사이의 전환은 많아야 3번뿐이다.
그리고 의외로 이 과정까지 성공적으로 밟은 사람들은 꽤 많은 비율로
다음의 추정을 하게 된다.
이게 수리논술이면 위와 같은 비약은 큰 감점이 있게 된다.
하지만 생각해보면, 위의 설정을 준수하면서 모든 조건을 만족하면
시험장에서 우리가 할 검증은 다 끝난 셈이다.
만약 다른 세팅에서 조건을 만족한다면 어쩔거냐?
수리논술이면 이러한 고려가 필요하고
우리가 검토진이면 이런 이슈가 최우선 고려사항이지만
학생은 답을 마킹하는 사람이지 검토진이 아니다.
실전에서 이러한 태도를 견지하고
이후에 문제를 풀면서 왜 해당 경우 이외의 상황이 배제되는지를 분석한다.
흔히들 사회생활하면 사석과 공적인 자리에서 행동을 달리해야한다고들 하지 않는가? 호칭부터 해서
그와 마찬가지다.
본인의 TPO에 따라 문제를 어디까지 팔지를 끊어야 한다.
(보충 1: 함수간 전환 관련 참고 문항)
(보충 2: 나머지 경우의 배제)
만약 h(x)=0의 두 근이 0, 2가 아닌 경우에는 어찌 되는가?
이는 크게 둘로 나눌 수 있다.
근의 조합이 (-2, 0) (2, 4)와 같은 경우 혹은 아예 0, 2와 무관한 경우
후자는 쉽다. 만약 그렇다면 그 두 근은 모두 g(x)의 것이다.
그러면 해당구간에서 h(x)=g(x)인데, 이 경우 g(x)는 축과의 두 교점에서 모두 극소여야한다. 삼차함수니까 불가능하다.
전자의 경우도 마찬가지로, 극소를 설정할 수 없다.
따라서 h(x)=0의 두 근은 x=0, 2이다.
그러면 부호 판정에 의해 g(x)=0의 근의 범위가 아래와 같이 나온다
(이하 상동)
그리고 이런 빠른 전환이 어려운 사람(이하 퍼거)들은
최대한 이런 능력을 키워야한다.
최근의 수능은 정말
퍼거들에게 잔인할 정도로 이런 능력을 요구하니까 말이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
01년생한테 4
몇년생이냐고 물어보는거 민폐인가요
-
수능 1등급 3
수학 선택과목이 기하 미적 확통있을때 1등급도 기하에서 4퍼센트 확통 4퍼센트...
-
그때 맨날 놀앗는데...하...그래도 수학만 좀 해놔서 다행
-
7월에 기행병 지원보급 합격했는데요. 당연 올해 수능은 못본다고 봐야하고 내년...
-
더프푸는데 한 6
10초 걸린듯
-
설대 aa가 4
수시로 자기들 학교 썼을 때 면접 부르거나 할 정도 되어야 주는 점수인가
-
닭강정으로 채택 9
이건 진짜 꼴리네
-
맘모스 사냥
-
지방살아서 서울에 대한 로망이 있는데 서울사람들은 다 예쁘고 잘생겼나요?
-
야이 기요마 7
이 기요미야 꾸준글
-
님들 할거없죠 4
이거맞아요?
-
초반만해도 6월전에 멘탈나가서 뭐하나 싶어서 안보려고 했는데 속는셈 치고 봐보니까...
-
무조건 aa임?
-
심심하노 2
공부하디싫노
-
오늘말고 내일
-
안녕하세요 쌩노베 재수생입니다…ㅠ 남들보다 늦게 공부를 시작하게 되어 고민이 좀...
-
내일 오답이랑 피드백이나 잘 해야지 아 근데 오늘 놀았어야 했는데.. 오늘 못 논게 아
-
4덮 언매 85 7
무보정이랑 보정 어느정도 예상하시나요 독서에서만 틀렷음...
-
2년전에 수능준비할때 평가원 교육청 못해도 높2는 나ㄹ왔는데 예전에 ㅇ이감같은거...
-
체력적으로 너무 힘들엇음뇨...
-
날씬한사람이 좋아 머리는 완전장발인게 좋음 눈 원래 낮긴한데 여기서 더 낮춰야...
-
같이 보는 것으로 약속하자
-
연?애 0
포기각서쓴지 20년
-
현역 정시파이터입니다. 선생님께서 무단조퇴 할때마다 벌점 준다는데 어떡하나요?...
-
4덮 96 15찍맞 22틀 힘들었던 문제 13,15 22는 문제 읽지도 않음 ㅋㅋㅋ...
-
어제 저격글 관련하여 유튜버 분과 대화 나누고 왔습니다. 61
어젯 밤에 제2의 보현이라는 제목으로 올라온 저격 글 보신 분들 계실 겁니다....
-
1주년 기념으로 전애인이랑 여행갓는데 집이 보수적?인가봄 전애인 부모가 우리집...
-
여잔데 콧수염이 남;; 11
막 엄청 진하진 않은데 거울 볼 때 자세히 보면 좀 거뭇거뭇함 사실나는남자였던것인가
-
같은 내신이여도 누군bb고 누군 cc고 20퍼라 은근 큰데..
-
수학 유형서 0
쎈 킥오프 말고 좋은 유형서 있나요?
-
07년생 우리 친구들 인원수도 많은데
-
단 1초도 후회해본적없음 그렇다고 전애인이 나쁜 사람이라는거는아니고 그냥 나랑 많이...
-
이번이 좀 못낸건가 비타민 k 한번 만들어보는게 교육청 사설업체 꿈인가 ㅋㅋ
-
사설이니까
-
술을 좀 줄여야되나 막 언어 장애가 자꾸 생기는 것 같음 그리고 길 걸을때 사선으로 걷더라
-
내일 점심은 덮밥임뇨
-
이미 실패를 해본 사람으로서 다들 실패의 아픔을 느끼지 않았으면..
-
수학 고수님들 한 번씩 풀어주시고 평가 해주시면 감사하겠습니다. 처음 만들어보는...
-
제발
-
뭔가 아쉽다
-
으대생이 막 자기 지방대생이라고 글쓰노 ㅋㅋㅋ 기만의 신들 ㄷㄷ
-
미적 시험범위가 3년치 더프인데 해설지도 안주면 뭐 어떻게 공부하라고 미친놈들 아...
-
21번은 버리고 앞문제에 집중하고 시험 끝날때쯤 걍 문제 슥 훑어봤는데...
-
원래 모고 다음날은 카니발임
-
나는 죽었고, 지금 내 인생의 주마등이 지나간다. 나는 이미 죽은거고 지금 살아가고...
-
바로 하이엔드 들어가는건 별론가요
-
연애가 하고싶다 3
나 남자인데 폭 안겨서 쓰담쓰담 받고싶음
이걸 15분만에 쓴다니
수업을 했으니 머리속에 그 내용 고대로 타이프하면 되는거라

저도 수업 내용을 써볼까 고민해봐야겠네요감사합니다

실수라는 조건을 통해 부등호는 성립할 수 없음을 알아내는게 중요했던 것 같습니다 굳
여기 이해못함... 설명좀 부탁해요이것도..
합집합 원소개수 구하는거 그런데 A=B일수 없죠 평행이동한거니
그리고 난 이제 문제를 만드는 사람이 되었다....크흑 존나 어려워
죄송한데 h(x)h(x+2) <=0 인 실수3개 조건에서
h(x)h(x+2)<0 인 실수가 없음이 어떻게 나오는지 알려주실분 계신가용 ㅜㅜ
h(x)h(x+2)<0인 실수가 있다고 가정해보면, 그런 실수 x근처에서 해당 조건을 만족하는 x값이 무수히 많이 존재하기 때문에
가정은 거짓임을 알 수 있습니다
오 캬 감사합니다♡