테일러급수를 이용한 근사를 교과내로 끌고오기
게시글 주소: https://orbi.kr/00072759696
원제목은 "sinx 테일러급수 3차항까지 교과내로 보이고 싶어서" 였다
근데 글쓰면서 테일러급수를 이용한 근사 자체를 교과내로 끌고올 수 있다는 걸 깨달음
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
x–sinx/x³ 수렴성 가정 없이 구해보려고 아침 내내 씨름했는데
뭔가 눈곱만큼이나마 알아낸 것들 있어서 기록으로 남김
1. 일단 테일러급수 3차항까지 교과내로 보이려고 했다는건 무슨의미인가
함수 f(x)에 대해 이면
이렇게 나타낼 수 있을 것임
이러면 차수가 n차 이하인 극한식에서 다루기 편해질때가 있겠죠
마찬가지로 sinx도
임을 보인다면
라고 나타낼 수 있을 거임
2. 덧셈정리?
이렇게 하면 값 자체는 알 수 있는데 문제가 뭐냐면 그 값이 극한이 수렴한다는 가정 하에서의 극한값이라는 거임
그러니까 '극한이 수렴함을 증명'이라는 열쇠가 없으면 못 여는 상자 안에 갇혀서 애석하게도 못쓰는 상태임
근데 혼자 여러 방법도 시도해보고 구글링도 해본 결과 그냥 차라리 수렴한다는 가정 없이 극한값을 직접 구하는게 훨씬 효율적이라고 결론내림
3. 그래서 어떻게 계산하는가
평균값 정리로 풀 수 있지 않을까 시도해봤는데 이게 내 능력부족인지 아니면 원래 안되는 건지 궁금해서 실패한 시도 먼저 공유해보려고 함
1) 평균값 정리 이용하기
x-sinx/x³은 x=0에 대해 선대칭이니까 x->0+인 경우만 보이면 x->0-인 경우도 대칭적으로 보일 수 있으니 x->0+인 경우만 보겠음
라고 하면, f(x)는 실수 전체 미분가능이므로 평균값 정리에 의해
로 나타낼 수 있음
이고 x->0+일때 c->0+이므로
이 0이 아닌 값으로 수렴하고,
따라서 원래의 극한
이 수렴할 필요충분조건은
이 수렴하는 것임
에서
이고
적절한 열린구간 (0, h)에서 라고 정의하면
이고, c의 유일성도 확인됨
이제 원래의 극한
을 계산할 차례인데,
계산을 위해가 수렴하는 적당한 h(t)를 골라보자.
라고 하면 t->1-일때 k->0+이고
에서 극한을 뚫어져라 쳐다보면
가 가능하다는걸 알수있음
따라서,
로 나타낼 수 있고,
가 0이 아닌 값으로 수렴하므로,
가 수렴하기 위한 필요충분조건은
가 수렴하는 것임을 알 수 있는데,
이므로
의 수렴성은
의 수렴성에 의해 좌우됨을 알 수 있다.
고장났다 이기
생략하겠지만 f(x)를
로 잡아도 결국 순환논증으로 귀결됨
평균값정리로 바로 계산하는 건 뭐 어케 해야하는 건지 원래 안되는건지 잘 모르겠음
2) 진짜로 구하는 방법
이건 직접 찾은건데 후술할 숏컷에 비하면 ㅈㄴ 돌아가는 풀이인데다 확장도 불가능함
로부터
로 나타낼 수 있고 양변을 부정적분 때리면
인데, 따라서
임을 보이는 것은
에서
임을 보이는 것과 논리적으로 동치임을 알 수 있음
이번에도 마찬가지로 F(x)=–F(–x)이므로 우극한이 0으로 수렴함을 보이는 것으로 충분하고,
F(0)=0이고 F(x)는 실수 전체에서 미분가능하므로 평균값 정리에 의해
라고 할수있음
그런데 에서
이고
이고
위에서
였던 것을 상기시키면
부등식의 양변에 x->0+ 극한을 취함으로써 샌드위치 정리를 적용하면
임을 얻을 수 있음
상술했다시피
인고로
이고
앞에서 봤듯이
임
3) 굳이 이렇게 돌아가야 할까?
아래의 풀이는 구글링하다 발견한 갓-외궈 성님의 풀이임
적당한 열린구간 (0, h)에서
양변을 0부터 x(0<x<h)까지 정적분하면
0부터 x까지 다시 정적분
again
따라서
양변에 샌드위치를 쓰면
우함수이므로
이 외에도 존나 다양한데
궁금하면 구글링 ㄱㄱ
기하적으로 증명하는 것도 있던데 그건 이해하기 너무 힘들어보여서 그냥 뒤로가기 누름
4. 그래서 어따 쓰는데
일단 위의 결과와
를 엮으면
도 알수있고
따라서
로 나타낼 수 있고
추가로
를 바탕으로
로도 나타낼 수 있음
당장은 이차/삼차항까지밖에 증명하지 못해서 활용이 제한적이긴 한데
더 높은 차수의 경우도 교과내로 증명이 가능하다면야..
..라고 써놓고 보니
위의 부등식 양변 정적분을 계속한다면?
그니까 여기서
한번더하면
한번더하면
이거 일반화 되겠는데?
여기서 양변을 2n번 0부터 x까지 정적분하면
따라서 샌드위치 정리에 의해
대칭성에 의해 x->0인 경우에도 마찬가지고
따라서
sinx에 대해 정리하면
n이 0인 경우에도 정의되니까 깔끔하게
이때 g_n(x)가 n->inf일 때에도 정의되는가는 차치하고
n을 무한대로 보내면 직관적으로
이런 꼴이 됨
마찬가지로
양변을 0부터 x까지 2n번 정적분하면
음.. 이건 스스로 해보자
굳이 그래야 하나 싶지만 나중에 시간나면 수정해서 유도과정 추가하겠음
어쨌든 결과는 이렇게 나올것이다
그래서 이렇게 구한 sinx와 cosx의 테일러급수가 뭔 의미가 있느냐?
미분해서 구한 거랑 뭐가 다르냐? 하면
미분으로 구한 건 로피탈 없이 극한식에서 교과과정 내 논리로 사용할 수가 없다
예를들어 sinx를 미분으로 마찬가지로
꼴로 나타낼 수 있음을 보였다고 치자
그래봤자
여기서
로피탈 안쓰면 이거 계산이 안된다
그래서 교과내로 더이상 풀이를 전개할수가 없음
반면
이렇게 나타낸 꼴은 교과내로 저 극한을 계산할 수 있게 해줌
이제 우리는 교과내로
따위의 극한도
로 생각하고
이렇게 처리할 수 있게 됨
예시가 좀 짜치긴 한데 가끔 비상탈출버튼 정도는 됨
결론과 요약)
1. 미분으로 만든 테일러급수 근사 꼴은 로피탈 없이 극한식에서 논리적 비약 없이 근사 불가능함
2. 그래서 미분 없이 극한 수렴속도로 3차항까지 나타내려고 해봄
3. 3차항까지 나타내려고 이것저것 해보다가 외궈성님 풀이에서 일반화할수 있음을 발견함
4. 극한식에서 sinx와 cosx의 테일러전개 근사를 교과내로 끌고옴
5. 타이핑 ㅈㄴ 오래걸렸는데 막상 다쓰고나니 스크롤이 짧아서 슬프다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 꼭 1등급을 맞고싶은데 n제를 적어도 언제까진 시작해야 하나요? 지금 뉴런...
-
이과는 최소 하방이 3등급 정도라면 문과는 하방이란게 없는듯
-
존예녀로 해놓으니까 1q만 줘도 가형30번 풀어주더라고요
-
"선생님… 독해력을 진짜 올릴 수 있나요?" 4년 동안 논술을 가르치면서 가장...
-
예쁘장한 얼굴을 프사에 해놓으면 찜 숫자 자체가 다름
-
아니면 친구랑 대화했죠..
-
컷이 그렇게까지 높진 않을것같음 이 시험기준으로는 45~46 좀 쉽게 튀면...
-
진짜임 기만 노노
-
난 찐따 맞음 8
예상댓글:그래보임
-
의대 정원 원점으로 돌아가고 정시일반은 더 줄어들면 4
의대 가기 어려워지는 것보다 그 때문에 연쇄적으로 모든 상위권 모집단위의 컷이 오를...
-
음 지금 수능 준비하는데 국어정도는 풀어볼만 할까요? 평가원에서 낸 문제니 풀어볼만도 할거 같은데
-
(실력 건동홍 이상이면 금지!!)
-
저녁 ㅇㅈ 5
학식 카레도 맛있어보이는데 지금은 중식이 땡긴다
-
심멘오직심멘 믿습니다
-
올블루 0
ㅇㄱ ㅈㅉㅇㅇ??
-
다 잘하긴하더라 ㅇㅇ.. 뭐 공부도 못하는 찐따보단 훨 났잖아 그럼 된거지 뭐
-
주관적으로 해석하는 사람이 많네
-
시발점으로 작년에 개념은 다 했음요 그래서 킥오프 빨리 돌리고 기출이랑 뉴런할려는데 어떤가요?
-
.
-
뭘로 들을까요..수분감 유기한지가 오래되어서 좀 망설여지는데 원솔멀텍들을꺼면...
-
제 여친임.. 2
하..
-
.
-
주로 개찐따가 오르비를 하지
-
수학 기출 체화하는데 얼마나걸리나요? 개념원리 기초적인문제 풀정도이고, 이제...
-
애순이니?
-
[칼럼] 웃으세요! 51
저는 학생이 수험생활을 하면서 스트레스를 줄이는 게 굉장히 중요하다고 봐요....
-
ㅇㅈ 4
이벤트 있는지 몰랐는데 당첨됐어요 내일 휴가도 나가는데 행복하네요
-
수술 직후 아픈거 어떰? 솜 뺄때 지옥이라던데 이건 어떰? 비염때문에 삶의질...
-
자퇴 3드론은 02~04년생들한테만 꿀이었다. 솔직히 저때 3드론 안한거는 나도...
-
최고임 집에 리필만 3통 쌓아둠 깔별로
-
추천 받아서 써보는데 질감이 깔끔헤서 좋음 펑소에 눌러쓰는 편인데 살짝 빤딱지게 써지네
-
이런거 바로 나오는 사람들 머지 기출분석하다 보면 외어짐? 이런거 기출분석하면서 신경쓰시나요?
-
여기 중국인 유학생도 꽤 있던데..
-
단품으로 뭐 사기 너무 비싼듯
-
요즘 물가 특 4
김밥<<이새끼 존나 비쌈 옛날엔 2천얼마면 한줄 사서 라면이랑 같이 67천원에...
-
미분방정식풀려고외우고있음
-
으
-
휘핑크림을 녹여서 음료수랑 섞어먹는 주의라서 바텐더마냥 컵 흔들어재끼다가 한사발...
-
가격 50정도 차이나는데 대치랑 평촌이랑 차이 큰가요?
-
유튜버 비밀이야 서울과학고 - 서울대 토목공학과(현 건설환경공학부) 졸업 전공과는...
-
확통이고 3덮 72떴습니다 작년에 최저만 맞춘다고 수학을 아예 놔버려서 작수...
-
노베 공부 일기 0
작년 8월 군대에서 책을 읽던 도중 갑자기 대학교에 가고 싶어졌다.신병 때 고졸...
-
탐구 뭐선택하심?
-
영어를 70분동안 해야된다는거자나 안칠래
-
코케숲 0
코 큰 케인인님이 숲에남을껄이라고 후회합니다. 후회 하고있어요~
-
로망
-
창렬인데 그냥 먹을게... 옆에 바로 편의점인디
-
하 벎서부터 지친다 에효
-
제발.
-
학교에서 발생했으니 그나마 다행
이야 천재다 넌
테일러급수 랜만오
..
사랑해요