제 가설 쉽게 해설한 버전
게시글 주소: https://orbi.kr/00072697000
R(x) : x가 현실에 존재한다
E(x) : x가 존재한다
1. ∀x (¬R(x) → E(x)) (현실에 존재하지 않는 모든것은 존재한다)
1의 부정형은
2. ∃x (¬R(x) ∧ ¬E(x)) (현실에 존재하지 않고 존재하지도 않는것이 존재한다)
2는 모순 (왜냐하면 "존재하지도 않는것이 존재한다" 이므로)
따라서 1이 참
결론
∀x (¬R(x) → E(x)) (현실에 존재하지않는 모든것은 존재한다)
---------------------------------------------------------------------
M(x) : x가 마음속에 존재한다
1. ∀x (¬R(x) → M(x)) ( 현실에 존재하지 않는 모든것이 마음속에 존재한다)
1의 대우명제는
2. ∀x (¬M(x) → R(x)) ( 마음속에 존재하지 않는 모든것은 현실에 존재한다)
2는 거짓(왜냐하면 치즈달을 상상한적 없다고 해서 치즈달이 존재하는게 아니기때문)
1의 부정형이 참
1의 부정형은
3. ∃x (¬R(x) ∧ ¬M(x)) ( 현실에도 없고 마음속에도 없는것이 존재한다)
결론
∃x (¬R(x) ∧ ¬M(x)) ( 현실에도 없고 마음속에도 없는것이 존재한다)
------------------------------------------------------------------
1. ∀x (E(x)) (모든것이 존재한다)
1의 부정형은
2. ∃x (¬E(x)) ( 존재하지 않는것이 존재한다)
2는 모순 (왜냐하면 존재하지 않는것이 존재한다고해서)
따라서 1이 참
결론
∀x (E(x)) ( 모든것이 존재한다)
∀x (E(x)) 와 ¬∃x (¬E(x))는 동치
¬∃x (¬E(x))의 뜻은 (존재하지 않는것이 존재하지 않는다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 정상인이었어
-
내가 뭘본거지 6
진짜 개더러운걸봤는데
-
작년 수능에서 국어5 영어4 나왔는데 어떻게 공부하는 게 좋을까요 집은 강남쪽에 살아요
-
사설 국어를 풀다보면 문학 파트 옳지 않은 문제에 와 지문에 없는 선지의...
-
음침하게 혼자 오르비하는건 디폴트니까 그건 좀 빼시고
-
위치 상관없음
-
일단 여자는 그런거 같음
-
더러워요..
-
앙 2
앙
-
똥쌌어
-
대단하다 진짜
-
새 프사 어떰 3
.
-
전학 vs 자퇴 2
ㅈ반고 다니는 정파 고2인데 자퇴하고 독재다니거나 집주변 갓반고 전학 고민중입니다....
-
실험 과목들이 특히..
-
노곤한거 같음 하루종일 잤음 몸에 기운이 없어 내일부터는 안먹어야지
-
내일은 오늘보다 나아지겠지
-
제가 맨날 강아지 귀엽다고 코박고 끙끙 소리 내는데 얘가 기분좋을때마다 끙끙거리는게...
-
진리를 꿰뚫는다
-
곽준빈이나 기안84 보면 지상파 방송이 예전같진 않아도, 확실히 그 상징성 같은 것은 있지 않나요? 2
지상파에 고정으로 들어간다는 것 자체가 구독자 수와는 별개로 완전한 메인스트림으로...
-
흠..
-
나랑 마주칠때마다 ㅈㄴ웃음 곧 자살할 예정
-
꺼라
-
아빠가 사주라 하고서 데리고 갔는데 아무것도 말 안해도 다 맞힘 게다가 재밌음 +...
-
우리집 누렁이도 아는데..
-
흠..
-
ㅇㅇ
-
겁나 하기 싫다 진짜
-
[공부] 노베를 응원하며 (부제: 이 패턴만 바꿔도 노베는 면합니다) 26
안녕하세요. 영포자 지도 전문 영어 강사 Good day Commander입니다....
-
그거 문학 교과서에 있음 내가 읽어보길 권하는 고전 수필들 - 일야구도하기(박지원)...
-
ㅊㅊ
-
흡연구역 가면 나도 냄새 떄문에 힘듦. 근데 아무대서나 피면 안되니 가야함
-
기출에 꽤 많던데 안나오는거 오히려? 좋아
-
재수생인데 이러는 게 ㄹㅇ... 다들 그냥 하는 건가요 스카독재라 너무 외롭고 별...
-
이오니아 핑크 4
어때염? 냄새 안 나나요
-
삘이 그럼
-
밥 기다리는 줄에서 어떤 사람 펨코 보더라
-
https://orbi.kr/00072744760 칼럼대회 많관부
-
술 마시고 싶다 0
-
저녁해장 2
-
우산 쓴 시간 3분도 안될듯
-
갈테 경기부엉이부터 옮생을 함께 했던 나로선 가슴이 미어진다.다음 옮생엔 내 비서로...
-
범위가 120페이진데 인강도 없고 ㅠ
-
이신혁T 시즌1 2
OZ 개념 기출 끝내고 아직 개념이 부실한 느낌이 들어서 이신혁T 시즌1 VOD...
-
박나래 ‘55억 단독주택’에 도둑 들었다… 수천만원 금품 도난 1
방송인 박나래가 집에 도둑이 들어 수천만원 상당의 금품을 도난당했다. 8일 박나래...
-
난 무료임❤️
-
당연함 기숙학원임 씨발 세상에서 도태되고 있다는 게 한번에 느껴지네
첫 문장 정확한 해석
모든 x에 대해, x가 현실에 존재하지 않는다면 x는 존재한다
부정
어떤 x에 대해, x가 현실에 존재하지 않고 x가 존재하지 않는다
이 상황에서
“모든, 어떤“의 범주, 즉 양화사가 서술할 집합을 “존재“의 범주보다 더 크게잡으면 해결됨
무슨소리냐면 세상으로 비유하면
“어떤“이 포괄하는 세상은 훨씬 더 크고
뒷 문장의 “존재“가 포괄하는 세상은 좀 더 작게 잡으면 모순이 해결됨
양화사의 “어떤“이 말하는 세상은 우리가 사는 세상인거고, 문장속 “세상“은 시뮬레이션 세상이면 모순이 없는느낌인거. 그림그리고 생각해보셈.
그렇게 잡지 않으면 님 말대로 모순이 생김.
그것뿐임.
실제로 “존재“라는 단어는 문장속에 집어넣으면 이런 모순을 낳는 문제가 있어서 주의해야됨.
뭔말인지 이해됨?
논리학 수업에서도 잘 안나오는 좋은 부분을 찾았음. 실제로 기호논리학에서 주로 다루는게, 기계적으로 문장들을 치환하면 이런 문제가 발생하는 부분인거. 이거 아마 철학과 논리학 수업 과제였나 아니면 교수님이 준 추가과제였나 그래서 나도 기억함.
결론적으로, 부정한 문장(어떤 x에 대해, x가 현실에 존재하지 않고 x가 존재하지 않는다)는 딱히 거짓일 이유도 참일 이유도 없기 때문에(존재는 그냥 “동사“임) 원래 문장도 그냥 아무런 결론이 도출되지 않음
아 근데 “그렇게 잡지 않으면 모순이 생긴다“는게 “그렇게 잡지 않아도 된다“ 즉 “너가 논리학의 모순을 찾았다“는건 아님. 그냥 논리학에서 알려진 해석 오류를 혼자 잘 짚었다는것
애초에 애매한 문장을 논리학 기호로 해석해서 쓰면서 exist가 튀어나온건데 거기서 갑자기 “존재“랑 “exist"의 범주를 혼동해서 해석하는건 순수히 해석하는 사람의 잘못임 ㅇㅇ...
너가 한건
어떤 x에 대해, x가 현실에 존재하지 않고 x가 존재하지 않는다
에서 “어떤 x"가 존재를 이미 함의하므로 모순이라 주장한거라고 요약할수있음
근데 사실은
어떤 x에 대해, x가 현실에 존재하지 않고 x가 존재하지 않는다
>> 이건 그냥 잘 정의된 문장이라는것
정도로 요약 가능
https://orbi.kr/00072718075
그런데
∀x (¬R(x) → E(x)) 나 ∃x (¬R(x) ∧ ¬E(x))에서
∀x 와 ∃x 의 x는
E(x)의 x와 같지않음?
그럼 ∃x의 x와 Ex의 x가 같은 범위라는건데
ㅇㅇ 그건 같은 범위인데
E(x)를 다시 “x는 존재한다“로 해석할때
“x"말고 “존재한다“가 다른범위임.
∃의 존재한다와
E의 존재한다가 같다고 한다면 어떻게되나요
저기서의 같은범위는 님이 문장으로 안 말해서 그럼.
당연히 저렇게 적으먼 같은범위임. 같은 x로 기호가 같은데.
근데 E는 “존재한다“라고 “해석“을 적어준다음
∃의 존재한다와
E의 존재한다가 같은 범위냐고 잘 물어보면
gemini가 “혼동하면 안된다“라고 답해줄거같음.
일단 내가 ChatGPT한테 실험으로 물어봤을땐 존재론적 오류(ontological fallacy)라고 대답해줬음
존재론적 오류는 해석할때 발생하는 오류임
해석은 기호로 된 논리식을 다시 일상언어로 바꾸는걸 말하는거고