[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 피곤해 2
밥먹고 집가자마자 바로 자야 되겠다
-
ㄱㄴ?
-
지층의 퇴적은 해수면 밑에서만 일어나나여?
-
X된 트위터 1
ㅈ됬다.
-
아따 동네 고기집 매출 올려주러 가보자잉
-
어차피 다 맞을거 아님? 그렇잖아
-
재수생이고 여태까지 공부를 한 번도 해본적이 없어 작수 수학은 원점수 60으로...
-
이런거 나올법한데
-
가끔 어빠이럼 엨ㄱㅋㅋㄱㅌㅋㅋ
-
진짜 그 뜻으로 말하신거였나 다들 수학만 말하는데 국어는 어캄???? 작년이랑 비슷할려나
-
프린터였네
-
명분이 이렇게 좋은데 롤빽 절대 못시킨다 20 21 23수능급 킬러정도는 나올수 있게 풀릴지도
-
점수가 늘음 실력이 늘었는지는 모르겠는데 실제로 찍히는 점수는 많이 늘었음요 별로인...
-
시민1:헌재 불질러버려 #~# 시민2:이게 말이 되냐고오오오!!!! 전광훈:아니...
-
마치 이반데소비치의 하루를 읽는거 같은 텁텁함과 오만과 편견에서 할매가 남준걸...
-
난대통령이될거야 2
미래의과학자발명왕
-
수능보기까지 1년동안 보통 수학엔제 몇권정도 푸시는거같나요??? 3
몇권정도 푸시는거같나요???
-
외로우면 혼자 술을 드셈 만화책 읽으면서
-
그거 그냥 주말에 학교 가도 됨? 반수생이라 평일에 학교 갈 시간이 안 날 것 같은데ㅜ
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41